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There are three major contributions discussed in this thesis:

1. A framework for understanding and optimizing the gaits of inertia-dominated

kinematic locomoting systems that make use of simple passive-elastic ele-

ments. We specifically focus on mass-dominated systems with only one con-

trol input and one uncontrolled shape mode affected by linear spring forces

and linear damping. For such systems, we do not have full control of the

gait’s profile in shape-space and must simultaneously shape the gait trajec-

tory of the active and passive components by varying only the control input

signal. We discuss two systems in particular, one that has a discrete passive

joint and one that exhibits continuously flexible bending along the tailbone.

We show that continuous flexibility enables more efficient locomotion when

the dynamic parameters are correctly optimized. We compare these swim-

mers under the case where we are capable of tuning the elastic parameters of



the system and for cases where we must work with suboptimal elastic prop-

erties. We demonstrate how motions for both of these systems can be opti-

mized over three different objective functions. In particular, we separately

optimize passive-inertial gaits that maximize swimmer speed, to maximize

the energetic efficiency with respect to actuator effort, and to maximize the

energetic efficiency with respect to overall system energy expenditure that

includes both actuator effort and a metabolic overhead cost. We discuss the

use cases and strengths of each of these objective functions and demonstrate

that factoring in metabolic cost produces a wide range of gaits useful for

efficient locomotion.

2. Simulation and analysis of the locomotion of the sea salp. These chains of

jellyfish-like zoids are not well studied and possess interesting modes of loco-

motion. We model these organisms as chains of links with periodically-firing

thrusters that exist in a drag-dominated environment and are connected

by passive joints that have some linear stiffness. We show how this sim-

ple model of collected individual agents evolves complex structural motion

through the fluid media. We discuss the evolution of buckling through the

salp and comment on the stability of the salp to certain joint configurations

and trajectories through position-space. We also develop an origami thruster

prototype constructed from a collapsible origami mechanism that produces

thrust when acted on by a series of twisted-and-coiled actuators.

3. A framework for performing system identification on locomoting robots con-



strained to a experimental testbeds, along with a methodology for using the

identified system model to generate and optimize motion candidates that can

be used to construct a gait library, enabling locomotive control of the un-

constrained mobile systems. When constrained, such locomotive systems ex-

hibit different dynamic properties because of the way the constraint changes

the system’s interaction with the environment. This makes it difficult to use

constrained experimental data to make predictions about a free-motion coun-

terpart. We develop a methodology for extracting the principal coefficients

that determine system locomotive properties from constrained experimen-

tal data, and use these principal coefficients to make predictions about how

the unconstrained system will move. We also discuss how this method can

affect experimental design by determining whether the desired locomotive

coefficients are actually observable given a certain body-motion experiment.

We validate this method using constrained and unconstrained experiments

involving a swimming robot platform called the AmoeBot developed by our

research collaborators at the University of California San Diego. We show

that data from constrained AmoeBot experiments can be extracted from the

physical context of the experiment and applied to the free-swimming case,

allowing for locomotive optimization and control. We show two experimental

cases of the AmoeBot being manually piloted using these controls to perform

the locomotive tasks of waypoint navigation and trajectory following.
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Chapter 1: Thesis Introduction

An appropriate way to begin discussing the concepts I have covered in my graduate

work would be to explain the choice of words in the title of my thesis: “The

Geometry of Passive and Constrained Locomotion.” Let us begin by doing so.

1.1 Why Geometry?

In designing robot motion, it becomes useful to operate on a variety of different

mathematical manifolds. By this, I mean that there are multiple types of coor-

dinate systems that can define any particular robotic system, and examining the

robot’s motion is often a problem of analyzing trajectories and mappings between

these coordinate frames [24, 25]. Such a problem will fundamentally rely on the

toolset of differential geometry. For an example of such a problem, consider the

problem of an inertial double pendulum that has been laid flat along a friction-

less horizontal surface and pinned in place through the proximal end of the first

link. There are two obvious choices of coordinates that can define the pose of the

structure.

The first choice is the Cartesian coordinates for the (x, y) position of each of

the two mass elements on the surface. This frame is useful because it is where

the system’s inertial physics live, making it convenient to quickly calculate useful
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properties such as system kinetic energy, and neither of the link masses change

dependent on the system’s current coordinate location [20]. However, these co-

ordinates are overdetermined for a pendulum of fixed link lengths, and only a

small subset of this four-dimensional coordinate space will be reachable by the

fundamentally two-dimensional system. Additionally, concepts such as torque and

rotational velocity require some manipulation to abstract into this space.

The system can alternatively be described by what I will refer to throughout

this document as the system shape, a set of indirect coordinates minimally neces-

sary to determine linkage positions in Cartesian space. For this double pendulum

example, the system shape can be parametrized by two joint angles: one at the

location where the system is pinned to the surface and one at the connection point

between the two links. This choice of coordinate frame is convenient in that it

provides a clean one-to-one relationship between any arbitrary pair of coordinate

values and a corresponding robot pose, but is inconvenient because the system’s

effective inertia is not constant over the space. This type of frame is also useful

for robotic systems in particular because they are often driven by electric motors,

which are well-modeled through concepts such as torque and angular displace-

ments.

We address the weaknesses of each of these coordinate choices by providing

a mapping between them, allowing us to cross over and combine the utility of

each. The differential of the mapping between the coordinates provides a Jacobian

that allows us to project the physics native to the Cartesian space onto the more

abstract angular coordinates [20]. This physical projection enables the notion of a
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Reimmanian metric on the angular coordinate frame, providing us with the ability

to estimate the “length” of trajectories in this space in a way that takes into

account the system physics [22,46].

The metric formulation is invaluable, because from a description of the metric

across the coordinate frame, we can model the angular coordinate space as a two-

dimensional manifold embedded in an abstracted three-dimensional space in which

concepts from differential geometry such as geodesics and local curvature have real,

intuitive, physical meaning [10,20]. For an example of such an application, imagine

choosing an arbitrary starting pose for the pendulum system and providing the

masses with an initial velocity. These initial conditions can be represented on the

shape manifold as a single starting point and a velocity vector indicating a direction

of travel. For the case in which there are no external or joint forces acting on the

system, this starting configuration produces a natural time-parametrized evolution

of system state that lies upon one of the shape manifold’s geodesics, meaning that

at every point of the path evolution on the shape manifold the trajectory is locally

straight and there is no tangential or normal acceleration.

This system can be modified by introducing complexity to the model that effects

the geometric behavior of the system evolution [28]. Friction on the actuators will

result in tangential decelerations that slow shape evolution along the geodesic and

might be compensated for by actuator control actions. Forces such as drag or

gravity that act directly on the link elements might produce normal accelerations

on the shape trajectory if uncompensated for by the actuators, resulting in a change

in the trajectory evolution from the unforced case.
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In this document, I will derive and utilize a variety of tools to examine robotic

motion that are geometric in nature, and rely at their heart on manifold analy-

sis. A core philosophy of this work is that many types of system motion can be

conveniently examined through the framework of geometric curves and manifolds.

1.2 Why Passive?

For many types of robotic systems, we tend to visualize constructs that have electric

motors operating on stiff, inflexible metal connections. In such a system, motion

can be modeled as being completely controlled and fully driven by the output of

the mechanical motors. However, in the analysis of robotic motion, it behooves the

roboticist to extrospect and draw inspiration from the biological motions that ex-

ist around us in the natural world. Such biological motion, without fail, leverages

flexibility within the system to improve behavior [50]. Having passive flexibility

within your system provides resilience to impact damage, allows a wider range of

construction materials and designs, and can reduce the energetic cost required to

perform a particular motion by admitting “free” behavior from components that

are not driven directly from a control system [14,68]. Passive-elastic components,

however, add considerable dynamics to the robot system, which can create chal-

lenges for gait modeling and analysis [14,39].

Examples abound. Microscopic flagella develop a helical structure that propel

cells from a simple oscillatory input by exploiting the passive flexible properties

of the flagella structure itself [9]. Fish increase the efficacy of their swimming
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motion by leveraging flexible fins that are only partially driven by muscle input [34].

Human muscle has a suite of convenient elastic properties naturally exert forces

to pull the body back to a resting state during and after excitation, reducing the

energy required to perform tasks like walk or manipulate objects [36].

The utility of passive elasticity becomes especially clear when considering a

human swimming in a body of water. The efficacy of our swim can be improved

by wearing plastic flippers, also known as swimfins, which bend and stretch in the

water as we kick our legs [43]. The passive elasticity of modern swimfins has been

carefully tuned to produce useful motion properties [3]. As the swimfin becomes

more stiff, it requires more and more energy to perform the propulsive swimming

kick, and as the swimfin becomes more flexible, the toes of the swimfin begin to

bend more aggressively and follow less closely the undulatory motion of the leg.

A particular swimfin stiffness will result in a particular pattern of motion from

human swimming as the swimmer accommodates the cost and benefits of this

artificial modification. Tuning the swimfin passive elasticity through mechanical

design and material choice allows us to select for a type of leg motion that produces

efficient travel through water [51].

In this work, passive motion behavior will be a recurring theme as we attempt

to examine the benefits of passive dynamics on robotic systems, and decide how we

might design robot mechanisms or control strategies that leverage elastic behaviors.
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1.3 Why Constrained?

There are multiple types of constraints present in the systems that I will discuss

in this work. There are geometric constraints that provide information about how

mechanical linkages in the system are connected and that allow us to reduce our

shape dimensionality to the degrees of freedom within the connections. There are

modeling constraints that allow us to simplify our mathematical approach, such as

assuming that a robot floating on the surface of water can be approximated as a

robot travelling on a flat plane. Finally, there exist locomotive constraints, which

is the category I will spend the most time discussing in this thesis.

Locomotive constraints exist within any mobile biological system and define

much of the physics of system motion. One example is the constraint between

a human foot and the ground. The friction in this interface produces a special

interaction that induces little or no slip between the two surfaces, allowing us to

leverage and push off from static contact points to walk. Humans will often select

foot placements while walking that exploit such constraints and minimize slip [40].

If this constraint is lifted even partially, such as on a slick ice surface, walking

becomes less efficient and we must adapt our gait.

It is not uncommon to apply other locomotive constraints beyond the basic ones

that enable motion. For example, consider trying to push a heavy bookshelf. In

addition to the foot-ground interaction, we accommodate an additional constraint

between our hands and the furniture such that sufficient force transmission is

required to move the bookshelf and the connection location is otherwise static.
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It should come as no surprise that this additional constraint changes the way we

position and move our body relative to our normal walking motion even though

the objective to move forward remains the same. However, between these two

differently constrained cases, the dynamic properties and capabilities of the body

remain the same, and could be observed with appropriate sensing.

For mobile robotics, it is occasionally expected to apply new locomotive con-

straints to the systems during experimentation. Such constraints can provide ad-

ditional sensing into the robot’s behavior, such as through load-cell connections

that measure force transmission between two constrained points [7,35,65], or serve

a purpose of convenience such as an elastic tether that keeps a system within an

experiment testbed [11] or a sliding rail that limits motion to one degree of free-

dom [55]. However, such additions do not generally change the internal dynamic

characteristics of the system.

In this work, we will discuss when and how it is appropriate to apply additional

experimental locomotion constraints to robotic systems, a process for identifying

a robot’s internal dynamic properties using constrained experimental data, and

how this dynamic information transfers between the physical context of separate

locomotive constraints.

1.4 Why Locomotion?

There is much versatility in biological locomotion. Organisms can alter gaits to

gain precise control over body motion for maneuvering, can cross terrain that is
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inaccessible to conventional wheeled systems, and can operate at a high level of

energetic efficiency [16, 32]. Through the study of locomotive systems, we hope

elevate modern robotics to be more robust and better able to handle the diverse

environments that the world has to offer.

We also hope to gain through these studies a better understanding of the nat-

ural world. Through robotic locomotive studies, we begin collaborative conversa-

tions with biologists and can form better and more interesting hypotheses to test

concerning biological motion [18].

In this work, we will address physical modeling and experimentation for loco-

moting systems. In particular, we will focus on systems that locomote through

fluid, occasionally referring to this phenomenon as ”swimming” when appropri-

ate. Our concentration on fluid-immersed systems exists for a variety of reasons.

First, such systems are mathematically more simple to model than other strategies

such as legged locomotion, which has a suite of event-based and stability-related

dynamics that can obfuscate some of the core principals that we seek to learn

from our locomotion studies [26]. Second, swimming robots are well-suited for

experimentation. If the electronics are correctly shielded, a locomotive misstep is

unlikely to result in catastrophic failure of the robotic system. This is a significant

advantage over legged or aerial robots, which can easily suffer hardware damage

after a controls failure [17, 27]. In addition, unlike aerial robotic systems, swim-

ming robots can fairly easily carry enough power through off-the-shelf electrical

batteries to power themselves for appreciable periods of time [59]. Robots that

locomote along the surface of a body of water are particularly convenient, because
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they require only limited waterproofing and can be approximated as travelling

along a flat plane, reducing the dimensionality of the locomotion problem.

Although there are a few confounding factors that complicate the process of

studying swimming locomotion such as vortex generation and unmodeled surface

interactions, we feel that these systems offer promising leads into the questions of

what optimal biomimetic locomotion looks like.

In this thesis, I will introduce three types of system that locomote through

fluid. The first two systems operate at opposite ends of the Reynolds number

spectrum, with the third situated between [2]. First, we will discuss high-Reynolds

number locomotion for elastic systems that pertains to systems where inertial

effects dominate the locomotive physics and drag can be neglected. Then, we will

discuss low-Reynolds number locomotion for systems where we can assume that

drag effects dominate the inertial contribution. Finally, we will leverage the lessons

learned from each and of this spectrum to study and optimize designs and controls

for robotic systems that swim in the intermediate Reynolds number domain of

aquatic motion.
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Chapter 2: Passive-Elastic Locomotion

2.1 Introduction

It is typical for animals and some biomimetic robots to locomote by interacting

with the environment through cyclic shape changes, or gaits. The study of these

motions provides insight into the organisms that perform these gaits and could

lead to the development of biomimetic robots with improved maneuverability and

increased mobility across different environmental terrains.

Animals often make use of passive-elastic body elements in their gaits, utilizing

flexible tails or pendulum action in the limbs to increase locomotive capabilities.

Some fish, for example, have passive properties such that vorticity in a current

can excite passive dynamics in the body and cause the fish to ‘swim’ upstream

even after the fish has died [5], highlighting the importance of passive mechanical

properties in biological locomotion. Humans also exploit passive dynamics while

walking: almost no muscle input is supplied to the knee during its swing phase [38].

The geometric mechanics community has developed a range of tools to study

the properties of gaits for different locomotor physiologies. Many of these tools,

however, assume that the locomotor’s shape space is fully actuated, and there-

fore the tools cannot be directly applied to systems with passive body elements.

Although previous works have developed geometric tools for the study of passive
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Figure 2.1: The active-passive swimmer models discussed in this chapter, shown
in motion due to gaits at their passive limit-cycles. Active joints are represented
by red circle motors, and passive joints by red springs. (a) Purcell’s swimmer (b)
‘Fish’ swimmer with a linear curvature passive tail

systems operating using no-slip constraints [15] and for swimming systems operat-

ing in drag-dominated regimes [6, 49], many systems such as fish or other aquatic

systems larger than a few millimeters in length are subject to a different set of

dominant physical forces. Such swimmers are better modeled as inertia-dominated

systems swimming in a high Reynolds number ‘perfect fluid’ that require a different

mathematical approach [20,29].

In this chapter, we construct a methodology for optimizing gaits in inertia-

dominated systems with passive-elastic elements that translate and rotate in a
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plane. We demonstrate that this methodology produces compact equations of

motion that allow for simple optimization of gaits that exploit passive dynam-

ics. In particular, we will discuss two models of simulated active-passive systems,

which are assumed to be swimming in a perfect fluid and are illustrated in Fig. 2.1:

(a) The three-link swimmer, with one passive joint

(b) A fish-tail swimmer with a passively flexible tail

For both of these systems, we discuss the properties of optimal motion and the

process of passive parameter selection. We show how to select a spring stiffness

and damping coefficient that will produce the most favorable passive dynamics for

a desired level of mean power consumption from the driving motor given a defini-

tion of body geometry. We also discuss how to compare the efficacy of different

passive shape modes by observing their respective optimal motions at unit average

power exertion from the input joint with properly normalized passive-dynamic co-

efficients. We demonstrate that the fish-tail swimmer produces more efficient loco-

motion than the three-link swimmer, indicating that continuous-curvature systems

have more favorable locomotive properties.

We then consider the process of optimizing gaits for systems in which the

passive dynamic coefficients have already been selected, potentially suboptimally,

by material choice or system design. We show that optimizations on both of these

swimming systems result in gaits that have similar properties. Optimizing for
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speed produces a maximum-speed gait that consists primarily of a sinusoid to the

active joint. In cases of suboptimal coefficient selection, the input sinusoid can

be augmented with a small amount of high-order motion that provides beneficial

characteristics in shape space.

Unlike a fully active swimmer, which can move arbitrarily fast when provided

with sufficient actuator power, swimmers with fixed passive elements have a sin-

gle highest-speed gait because of the passive-dynamic interaction. Optimizing for

mechanical efficiency produces zero-motion gaits because actuator cost increases

faster than displacement as the gait size increases. We demonstrate that consider-

ing an additional metabolic cost alongside actuator effort costs, however, produces

a class of useful gaits that yield efficient locomotion for systems with varying over-

head energy consumption. Low swimmer metabolisms produce minimal motion, as

the swimmer is not incentivized to move quickly. High swimmer metabolisms drive

the system to gaits similar to the maximum-speed gait. Middling metabolisms

produce gaits that compromise between speed and mechanical costs. High-level

optimization results for the three-link swimmer are illustrated in Fig. 2.2.

2.2 Mathematical Formulation

In this section, we review the assumptions and techniques that facilitate this work

and provide the formulation for the optimization used in our following dynamic sys-

tem examples. We then briefly discuss techniques for qualitatively understanding

the properties of optimal gaits.
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Figure 2.2: High-level optimization results for the three-link swimmer: (a) When
the passive joint properties can be tuned to suit desired exertion level, the optimal
gait is a simple sinusoid input. The gait formed from this input and the passive
response is shown superimposed on the forward-motion CCF. (b) The three-link
swimmer in the process of its optimal gait, not to scale with swimmer body size.
(c) The result of executing ten gait cycles, to scale with swimmer body size. (d)
When the passive joint properties are fixed suboptimally and cannot be optimized
alongside the gait, the optimal gait includes high order motion on top of the
input sinusoid. Gait asymmetry is highlighted with a grey dashed line. (e) A
contour plot of mechanical efficiency over various sinusoid inputs to the active
joint. Optimizing directly for mechanical power results in zero-amplitude gaits
that produce no displacement. (f) A contour plot of metabolic efficiency for a
metabolic rate of γm = 0.05. Including metabolic costs alongside mechanical cost
of transport in the objective function produces non-trivial efficient optimal gaits.
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2.2.1 Obtaining the Equations of Motion

The models we employ in this work are built upon the assumption that the momen-

tum of the swimmer-fluid system remains constant throughout the gait cycle [23]

- i.e. we only apply forces to the system through active joint forces, and we do not

consider the effects of vortex shedding or fluid drag. This assumption allows us to

relate body motion to a system’s shape variables r and their time rate of change

ṙ through the momentum-free reconstruction equation,

◦
g = A(r)ṙ, (2.1)

in which
◦
g represents swimmer velocity expressed in its local body frame and A

is the motility map, which linearly maps shape velocities to the resulting body

velocities produced through fluid interaction.1

For inertial systems, the motility map can be found by first writing the system’s

kinetic energy in terms of its body and shape velocity and its generalized mass

matrix M ,

KE =
1

2

[
◦
gT ṙT

]
M

◦
g

ṙ

 . (2.2)

The total mass matrix is formulated from individual link mass matrices µi. The

individual mass matrices are the sum of mass contributions from both link masses

1In previous works, we have used the equation
◦
g = −A(r)ṙ and referred to A as the local

connection. Here, to reduce sign confusion, we have included the negative sign in A and chosen
to refer to it as the motility map instead as in [4].
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and hydrodynamic added mass terms that take into account the fluid mass that

must accelerate with swimmer motion,

µi = (µi)body + (µi)fluid. (2.3)

The hydrodynamic added mass plays a key role in the dynamics of swimming

systems, as it introduces the anisotropy of reaction forces that allows the systems

to generate net position changes through cyclic shape changes.

The individual mass matrices are pulled back into generalized coordinates via

the Jacobians Ji relating swimmer velocity and shape velocity to link velocity in

the link’s frame as in [20],

M(r) =

Mgg Mgr

Mrg Mrr

 =
∑
i

(
JT
i µiJi

)
. (2.4)

This mass matrix can be used to intuitively map generalized velocity to generalized

kinetic energy as in Eq. (2.2), and can also be used to map generalized velocity to

generalized momentum,

p = M

◦
g

ṙ

 =

Mgg Mgr

Mrg Mrr


◦
g

ṙ

 . (2.5)

Under the assumption that no mass components are shed from the swimmer,

the total momentum of the swimmer-fluid system is conserved. If the swimmer

starts at rest, the system maintains zero position-space momentum for all time.
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Using this Pfaffian constraint,

0 = Mgg
◦
g +Mgrṙ, (2.6)

we can solve for the motility map A that maps joint velocities to swimmer body

velocities that are consistent with both the specified shape motion and the zero

momentum constraint in Eq. (2.6),

◦
g = −M−1

gg Mgrṙ = A(r)ṙ. (2.7)

For a closed cyclic gait path ϕ through shape space, total resultant body motion

gϕ from one gait cycle can be found as the line integral of the motility map along

the gait path mapped from the body frame into the system’s local coordinates

through the body configuration g,

gϕ =

‰
ϕ

gA(r). (2.8)

To estimate the actuator forces required to enforce a desired gait shape, it is

useful to represent the swimmer’s effective mass in the shape space. This reduced

mass matrix Mr can be calculated from the mass matrix and the motility map [20],

Mr(r) =

[
AT (r) Id

]
M(r)

A(r)

Id

 . (2.9)

This formulation allows us to decouple the internal shape-change dynamics

from the external body-motion dynamics and write the full system Lagrangian L
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only in terms of the shape variables without direct consideration of body veloc-

ity, because the position-space motion induced by shape change motion is handled

implicitly through the motility map. We also take into account passive joint be-

havior through a stiffness matrix K that encodes the potential energy from passive

joint stiffness and a Rayleigh dissipation function G that encodes the damping fric-

tional force at the passive joint through the dissipation matrix B. In this work,

stiffness and damping act on the passive shape mode only, and so K and B are

zero in the position space terms and can by position-space symmetry be expressed

conveniently in the same reduced-dimension space as Mr:

L = KE− PE =
1

2
ṙTMr(r)ṙ −

1

2
rKr, (2.10)

G =
1

2
ṙTBṙ. (2.11)

When the system shape is composed of a controlled mode rc and a passive mode

rp such that rT = [rc, rp], the stiffness matrix can be written using only the passive

mode spring constant k,

K =

0 0

0 k

 . (2.12)

Similarly, for an inertial fluid where the only source of dissipation is damping on

the passive joint, the dissipation matrix can be written using only the damping

constant b,
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B =

0 0

0 b

 . (2.13)

Passing the Lagrangian and the Rayleigh dissipation function into the Euler-

Lagrange equations produces equations of motion for the system shape variables

that account for the dynamics of induced body locomotion and passive joint be-

havior,

τ = Mr(r)r̈ + C(r, ṙ) +Kr +Bṙ. (2.14)

As discussed in our previous work on inertial arts [20], the Coriolis forces can be

calculated as

C(r, ṙ) =

(
d∑

i=1

∂Mr(r)

∂ri
ṙi

)
ṙ − 1

2


ṙT ∂Mr(r)

−∂r1
ṙ

...

ṙT ∂Mr(r)
∂rd

ṙ

 . (2.15)

Solutions to Eq. (2.14) for a periodic control joint input signal rc(t) can be

lifted to position-space solutions via the reconstruction equation in Eq. (2.7) to

provide gait limit cycle locomotive properties.

2.2.2 Limit-Cycle Estimation

Our previous work [49] optimizing passive swimming in low Reynolds number sys-

tems used Laplace transforms and frequency-space analysis to estimate the passive
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joint limit cycles. However, this technique is not feasible for inertial systems.2 In

this work we estimate the limit cycle by evaluating the ODE from Eq. (2.14) in the

time domain, although others have previously used techniques such as frequency-

domain nonlinear harmonic balance methods [15]. Using any of these limit-cycle

estimation techniques, we can find signal parameters to the active joint motor that

best exploit passive dynamics to suit some objective function. Here, we discuss

our time-domain methods.

By separating the shape space into the actively controlled shape mode rc and

the uncontrolled passive shape mode rp, the equations of motion in (2.14) can be

rewritten as

 τc

−krp − bṙp

 =

Mcc(r) Mcp(r)

Mcp(r) Mpp(r)


r̈c
r̈p

+

Cc(ṙ, r)

Cp(ṙ, r)

 . (2.16)

In order to simulate these dynamics, we write the active joint control signal as

an nth-order Fourier function of time parameterized by the Fourier variables a0...n,

b1...n, and ω,

rc(t) = ac,0 +
n∑

i=1

(ac,i cos(iωt) + bc,i sin(iωt)) . (2.17)

By taking time derivatives of this equation, the joint velocities ṙc and joint

2In our previous work, we approximated that the drag matrix is constant, which allowed us
to perform Laplace transforms and directly estimate the passive transfer function. For inertial
systems, the mass matrix is heavily dependent on the swimmer shape, so the assumptions required
for Laplace domain analysis are no longer valid. Additionally, assuming a constant mass matrix
eliminates our ability to factor in centrifugal and Coriolis forces, as these are calculated from
mass matrix derivatives.
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accelerations r̈c can be readily calculated. These values are used to numerically

solve for the configurations of the passive modes over time by solving Eq. (2.16)

for r̈p and evaluating the resulting ODE,

r̈p = M−1
pp (−krp − bṙp −Mcpr̈c − Cp) . (2.18)

We estimate limit cycle shape motion by finding the behavior that results from

multiple executions of the candidate control signal. We then estimate gait dis-

placement by using the local connection relationship in Eq. (2.7) to calculate the

net motion that results from limit cycle execution of the gait. In Section 2.3,

we will use the properties of this limit cycle such as net displacement, gait cost,

and gait period to evaluate the fitness of a candidate control signal and perform

optimizations over control signal parameters and passive shape properties.

2.2.3 Mechanical Cost of Transport

Once the gait limit cycle is known, we can also find the energy consumption re-

quired to enact this gait. In this work, we use positive mechanical power as the

primary source of energy consumption, representing the energy required by the

control motor to enforce the desired shape motions over the course of the gait pe-

riod T . The control joint requires no energy input when backdriven during periods

of negative mechanical power [1]. The mechanical cost of transport Eτ is the total

positive mechanical power usage over the gait,
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Figure 2.3: Shape parameterization of the three-link swimmer.

Eτ =

ˆ T

0

max(τcṙc, 0)dt. (2.19)

Here, the c subscript refers to the fact that we only consider power consumed by

the control joint, as passive joint mechanical power comes for free from the passive

components.

We will use the notion of control motor power consumption in later sections

of the work to discuss gait efficiency in terms of displacement with respect to the

mechanical cost of transport.

2.2.4 Gait Intuition through the Constraint Curvature Function

The motility map A is a covector field over the shape space mapping shape space

motions to body motions. Net gait displacement can be found by integrating the

motility map over the path of the gait ϕ while mapping instantaneous motion from
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the body frame into the world frame through the swimmer state g as in Eq. (2.8).

If the gait shape motion is a closed loop, this line integral can be approximated

by an area integral over the enclosed space ϕa in a manner similar to Stokes’

theorem [19],

gϕ =

‰
ϕ

gA(r) ≈
¨

ϕa

DA, (2.20)

where DA is the curvature of the constraints encoded by A. This constraint

curvature function (CCF) is generally useful for examining regions of the shape

space that contribute to locomotion in the desired direction [19]. Gaits are more

effective at achieving displacement if they enclose sign-definite regions of the CCF.

The forward-motion CCF for the three-link swimmer is shown in Fig. 2.2(a).

This approximation is most accurate in body coordinates at a generalized center

of mass. These coordinates minimize the noncommutative interactions from the

intermediate motions along the gait [22].

In this work, we use the motility map to directly measure the net motion from

gait limit cycles as in Eq. (2.8) and the CCF to provide high-level intuition into

why optimal gaits tend to develop particular shapes. Speedy and efficient gaits will

generally enclose primarily the positive black region in the center while minimizing

the amount they enclose the surrounding negative red regions.
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2.2.5 Swimmer Modeling

To demonstrate the principles described above, we apply them to two swimming

locomotors.

The first is the three-link swimmer, a model that is commonly used as a min-

imal reference example for locomoting systems [44]. As illustrated in Fig. 2.3,

the three-link swimmer is composed of a chain of three elongated links, and the

swimmer shape is parameterized by the angular deflection of the two joints in

the chain. By performing the geometric process detailed above, the low Reynolds

number Purcell swimmer can be modified into a perfect-fluid swimmer in an ide-

alized high Reynolds number environment. To model hydrodynamic added mass,

we approximate each link as an ellipse and use added mass coefficients given for

ellipses in previous works [41]. To simplify the process, we assume that each swim-

mer element has a constant hydrodynamic mass, although a full shape-dependent,

hydrodynamically coupled model could be found using the panel method [29] at

some additional computational expense.

The second system is the fish-tail swimmer, which has a passively flexible tail.

Continuously flexible systems are common in aquatic locomotion, as biological

swimmers tend to locomote using motions that continuously deform the body

rather than with joint-like behavior [33,52]. Aside from the flexible tail, this model

is conceptually similar to the three-link swimmer, with oscillations of a rigid ‘head’

driving locomotion. The fish-tail swimmer is illustrated in Fig. 2.4

In this work, we simplify the model of a continuously flexible tail by assuming
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Figure 2.4: Shape parameterization of the fish-tail swimmer. The passive shape
mode is tuned so that the shape magnitude is equal to the angular deflection at
the tip of the tail.

that tail stiffness is high enough that the forcing frequency is below the fundamental

eigenfrequency, so all motion corresponds to the first mode of an inertial cantilever

beam. Curvature of the tail is at a maximum where it connects to the swimmer

head, and decays to zero at the tip of the tail.

To estimate the curvature mode of the passive-flexible tail, we take the tail

as an Euler-Bernoulli beam of tapering width. Using beam theory, we find the

relationship between the curvature of the tail and the force profile applied along

the length. Using this curvature-force relationship, we iterate until we find a

curvature mode consistent with the inertial force profile that results from that

modal acceleration.

We initially model the force profile on the beam as the force on a straight beam

undergoing angular acceleration through fluid at the base of the tail. We model

the inertial force f(s) on the rigidly rotating beam as linearly decreasing along the
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tail arclength s from a maximum at the beam tip (s = 0) to zero at the base of

the tail (s = 1) due to the acceleration of the beam components through the fluid,

f(s) = f0(1− s). (2.21)

The particular force magnitude f0 is not important at this point because we will

later rescale the shape parameterization such that the mode has unit integrated

curvature. We then analytically solve for the internal moment m(s) at each point

along the beam that gives balance to the applied inertial forces,

m(s) =
f0
2

(
s2 − s3

3

)
. (2.22)

To approximate the continuous stiffness of a biological fish, we use a tapered

body profile, such that beam moment of inertia I(s) is at a maximum where it

connects to the ‘head’ and decays to zero at the tail tip,

I(s) = I0s. (2.23)

The moment of inertia profile combined with the elastic modulus E gives a local

bending stiffness k(s) for each point along the beam arclength that relates the

internal moment at that point to the resultant local curvature κe based on the

beam mechanical properties,

k(s) = EI(s) =
m(s)

κe(s)
. (2.24)
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Using the local stiffness profile given by the tapering beam shape and the

internal moment profile found from the force distribution, we can calculate the

resulting curvature profile over the beam,

κe(s) =
m(s)

k(s)
=

f0
2EI0

(
s− s2

3

)
. (2.25)

To ensure convergence of the iterative algorithm, we enforce through a scaling

factor C that each iteration of the curvature mode has unit amplitude,

C

ˆ 1

0

κe(s)ds = 1. (2.26)

This gives a normalized shape mode curvature profile in terms of the passive shape

magnitude rp,

κp(s) = Cκe(s)rp. (2.27)

A convenient side-effect of normalizing the curvature mode is that it leads to shape

magnitudes rp that are directly comparable to those of the three-link swimmer.

With this normalization, the tip orientation associated with a particular shape

magnitude aligns with the orientation of the three-link swimmer tail at the same

magnitude. This correspondence of tip angle to a discrete joint on the swimmer is

illustrated in Fig. 2.4.

Once we have this shape mode, we replace the force profile used in Eq. (2.21)

with the inertial force profile that would result from acceleration of this curvature

mode,
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fn+1(s) = f0

ˆ s

0

(s− ℓ)κp(ℓ)dℓ, (2.28)

where ℓ is an intermediate variable that allows for integration along the arclength

up to the specified location s. We then iterate these calculations, using forces

to estimate curvatures and curvatures to estimate forces, until the shape mode

converges to a curvature profile consistent with inertial forces that would result

from that profile. We use the converged curvature profile as our mode-shape for

low-dimensional analysis. This iteration process is illustrated in Fig. 2.5.

This passive shape mode approximates the deflections experienced by a tapered

beam in inertial fluid where the forcing frequency serves to excite primarily the first

eigenmode, which has been previously shown to be an effective way of producing

reactive thrust for slender metal beams submerged in water [62]. Subsequent modes

can be added to generate traveling waves and more complex passive behavior.

Once we have a curvature profile for the shape mode, we can calculate the

Jacobian J(r, s) continuously along the beam arclength using techniques presented

in our previous works [47]. The mass metric contribution from the tail is calculated

akin to Eq. (2.4) by integrating the hydrodynamic mass pullback along the beam

using the beam’s hydrodynamic mass density ρm,

M(r) = Jh(r)
TµhJh(r) +

ˆ 1

0

J(r, s)TρmJ(r, s)ds, (2.29)

where the h terms represent the mass metric contribution from the rigid head

element.
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Figure 2.5: Results of iterating back and forth between beam force profile and
resultant beam curvature. From the linear force mode, the beam quickly converges
to a mode that has a self-consistent curvature and force loading. This iterated
mode qualitatively similar to the linear force mode.
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Beam stiffness can be expressed in the shape mode as the second derivative of

tail potential energy with respect to the passive shape mode deformation. Inte-

grating along the tail to find the potential energy, we find

PE =

ˆ 1

0

1

2
k(s)κ2

p(s)ds. (2.30)

From here we calculate the modal stiffness,

kp =
∂2PE

∂r2p
= C2

ˆ 1

0

k(s)κ2
e(s)ds. (2.31)

The modal stiffness kp is a spring constant that relates shape mode magnitude

to the net beam passive response due to the beam mechanical properties, and can

be used to build the stiffness matrix in Eq. (2.12).

Previous works have investigated limit cycle estimation for locomotors with

multiple passive modes [15], allowing for the optimization techniques presented

in this work to extend to systems with additional passive shape modes. If given

physical motion data for points along a flexible body moving in fluid, appropriate

shape modes can be extracted using the technique of eigenvector analysis [58]. This

allows for a model to be built with behaviors that more closely resemble physical

motion of a desired system.
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Described Quantity Symbol Unit
Swimmer Length ℓ ℓ

Time t s
Mass m m

Net Gait Displacement D ℓ
Gait Period T s

Gait Frequency Hz 1/T → 1/s
Instantaneous Body Velocity

◦
g ℓ/s

Gait Speed ηv D/T → ℓ/s
Shape Deflection r rad
Shape Velocity ṙ rad/s

Shape Acceleration r̈ rad/s2

Torque τ mℓ2/s2

Spring Stiffness Coefficient k τ/r → mℓ2/rads2

Damping Coefficient b τ/ṙ → mℓ2/rads
Energy E mℓ2/s2

Power P E/s → mℓ2/s3

Metabolic Rate γm E/s → mℓ2/s3

Mechanical Efficiency ητ D/E → s2/mℓ
Metabolic Efficiency ηm s2/mℓ

Table 2.1: Generalized units for quantities used in this work.

2.2.6 Units

The numerical results we present later in this chapter use the set of units provided

in Table 2.1.

2.3 Optimizing Performance

In general our high-level optimization process is as follows. First, we choose a swim-

mer model and use this model to develop passive-dynamic equations of motion.

Then, we can estimate the whole-body limit-cycle that results from a particular
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choice of control joint input signal rc(t) and passive joint parameters k and b. Net

gait motion is found by integrating the motility map over the gait cycle, gait period

is found from the gait frequency parameter, and gait energy cost due to actuator

usage is found by integrating actuator effort over the gait cycle. These metrics

are combined into a fitness function that quantifies the performance of a choice of

control joint input signal and passive parameters. The input signal and passive

joint parameters can then be optimized for the chosen objective function using any

sample-based optimization algorithm.

Depending on whether we are optimizing the gaits of a fixed physical plant

or simultaneously optimizing gaits alongside physical design, there are multiple

possible routes for optimizing passive-inertial systems.

If the optimization is performed before the system is fully instantiated, the

spring and damping constants can be chosen alongside the gait parameters to op-

timize system behavior and the passive dynamics with respect to a desired average

level of energy exertion. This method can be used to compare the performance of

potential locomotor geometries or shape modes by comparing ideal performance

of the different systems under identical power consumption.

It is also possible to optimize gaits for systems that have immutable passive

coefficients that cannot be optimized alongside the gait parameters. This route

is more applicable to systems where the passive coefficients are fixed in place by

material choice or other design considerations.

In this section, we will describe how we construct the objective functions that

we use to optimize gaits for the separate cases of mutable and immutable passive
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joint behavior.

2.3.1 Simultaneously Optimizing Gaits and Passive Coefficients

The systems we deal with in this work are heavily nonlinear, with the system

mass matrix and subsequent limit-cycle dynamic behavior being strongly coupled

to shape space. However, once a limit-cycle transfer function for a given input

motion is established using nonlinear methods, we can use a linear approach to

find a curve through the space of joint properties and actuator frequency that

produces constant transfer functions. Along these particular identical-transfer-

function curves in parameter space, nonlinear effects scale cleanly because there

are no variations in the gait’s path and relative pacing. For these cases, scaling

from linear theory is exactly correct even on the nonlinear system. These curves

can be monotonically parameterized by input power to the active joint, so we can

select a point along it to match the available power. The optimization problem

then becomes finding the highest-speed limit cycle that can be executed at unit

power. After finding this pairing of optimal unit-power input motion and passive

parameters that enable this motion, the behavior can be scaled to any desired

average power level using linear theory, giving simultaneously the fastest and most

efficient locomotion possible at that power level.

Our identical-transfer-function curves are formed in the space of three parame-

ters: the spring constant k, the damping constant b, and the gait frequency ω. For

the limit cycle transfer function to stay the same, two ratios must be preserved:
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Unit-Power Optimal Swimming Comparison
Three-Link

Optimal Gait

Fish-Tail
Optimal Gait

Three-Link Optimal Gait: 10 Cycles

(a)

(b)

(c)

(d)

Fish-Tail Optimal Gait: 8.9 Cycles

Figure 2.6: Comparison of the three-link swimmer and the fish-tail swimmer with
optimized passive coefficients performing their optimal gaits at unit power con-
sumption. Although the three-link swimmer can perform its gait 10% faster than
the fish-tail swimmer at unit power, the displacement per gait cycle is substan-
tially lower, so the fish-tail swimmer has more efficient locomotion overall. (a)
The three-link optimal gait superimposed on the forward-motion CCF. Optimal
motion for tuned passive parameters is a simple sinusoid input. (b) The fish-tail
optimal gait superimposed on the forward-motion CCF. Optimal motion for tuned
passive parameters is a simple sinusoid input. (c) Result of the three-link swimmer
performing 10 gait cycles at unit power consumption, with displacement to scale
with swimmer body. Body center-of-mass tracked with a red background line.
(d) In the time it takes the three-link swimmer to perform 10 gait cycles at unit
power, the unit-power fish-tail gait can be performed only 8.9 times. Result of the
fish-tail swimmer performing 8.9 gait cycles, with a red background line tracking
body center-of-mass motion.
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The first is the ratio of the input frequency to the system’s natural frequency,

Rω =
ω

ωn

=
ω√
k/m

, (2.32)

and the second is the damping ratio,

ζ =
b

2
√
km

. (2.33)

In the space of our three parameters k, b, and ω, the frequency ratio and

damping ratio act as two constraints that enforce a constant limit-cycle transfer

function. This leaves us with a one-dimensional curve through the parameter space

on which the transfer functions will be identical for the same input motions. Along

the identical-transfer-function curve, the two ratios are constant, so along the curve

the spring constant is proportional to ω2 and the damping constant is proportional

to ω (neglecting variations in mass because they will be identical along the curve).

This means that we can parametrize the constant-transfer-function curve as a

function of gait frequency,

TF (ω) = (k(ω), b(ω), ω) = (k0ω
2, b0ω, ω), (2.34)

in which k0 and b0 are the spring and damping constants corresponding to unit

gait frequency.

For the system effort, we consider primarily the positive mechanical power,

Pc = max(τcṙc, 0), (2.35)
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representing the rate of energy supply required to enforce actuator motions. An

actuator without regenerative braking will consume energy during periods of posi-

tive mechanical power and will require no energy when backdriven during periods

of negative mechanical power [1].

Examining time-derivatives of the Fourier parametrization expressed in Eq. (2.17),

we observe that input speed across the gait ṙc is proportional to ω and input ac-

celeration r̈c is proportional to ω2. We also note from the dynamic equation of

motion expressed in Eq. (2.14) that control torque τc is proportional to input ac-

celeration. Combining these relationships in Eq. (2.35), we see that the average

positive mechanical power supplied to the control motor is proportional to ω3 along

the constant-transfer-function curve. This relationship is formed as

Pavg = P0ω
3, (2.36)

where P0 is the average power required to execute the gait when performed at

unit gait frequency. From this power-scaling relationship, we can solve for the gait

period that would result in a unit-power execution of the given limit cycle:

T1 = P
1/3
0 . (2.37)

The corresponding unit-power gait frequency comes from the simple inverse

relationship between period and frequency,

ω1 =
1

T1

. (2.38)
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This relationship lets us avoid the computationally difficult nonlinear constraint

of directly restricting gaits to unit power. Instead, we fix the gait frequency to

unit value, observe the power required to enact the limit cycle for given passive

parameters and gait definition coefficients, and then find the gait frequency and

passive parameters that give the same limit cycle in shape space at unit power

consumption.

In summary, we can optimize the physical parameters that determine the pas-

sive dynamics alongside the control parameters that define the gait. To do this,

we fix gait frequency to unit value, leaving the remaining optimization variables as

the Fourier parameters, stiffness coefficient, and damping coefficient. To perform

our optimization, we simulate the passive-dynamic response to the described input

motion and observe the limit-cycle energy cost Eτ and the net forward displace-

ment D that result. From the unit-period energy cost, we find the gait period

and passive coefficients that result in unit-power execution of the same limit cycle

with the same gait parameters. Our objective function is then the locomotor speed

when the gait is executed at unit power,

η =
D

T1

. (2.39)

The gait that maximizes speed given unit power input can be rescaled using

Eqs. (2.34) and (2.36) to find the frequency and passive parameters that produce

the fastest and most efficient locomotion at any desired power budget.

Results for optimizing gaits and passive parameters for the three-link swimmer
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and the fish-tail swimmer are shown in Fig. 2.6. Both optimal gaits consist of

first-order sinusoids. We attribute the lack of high-order motion to the fact that

high-order joint activity comes with cubicly increasing power costs.

Comparing the behavior of the two systems at unit average power consumption

of the driving motor, we can see that the fish-tail swimmer is approximately 20%

more efficient than the three-link swimmer. Although the three-link swimmer can

perform its optimal gait 10% faster than the gait of the three-link swimmer, its

displacement per cycle is only 75% of that of the three-link swimmer. It is likely

that other choices of body curvature could improve the performance of the fish-tail

swimmer even further. Unlike the fish-tail model, migratory biological swimmers

like trout and salmon produce efficient long-distance locomotion through body

curvature that is heavily concentrated towards the rear of the swimmer [53]. The

tapering-stiffness beam, however, develops a high curvature concentration near the

center of the swimmer body, leading to potentially suboptimal behavior.

2.3.2 Objective Functions for Fixed Suboptimal Passive Coefficients

For a robot, it is not always the case that we have full control over the passive

parameters of body stiffness and damping. These factors are likely to be influ-

enced by material choice in the body of the locomotor or other considerations in

mechanical design. For these cases, we seek to find the input joint behavior that

produces best locomotion given an existing physical system.

With fixed passive behavior, we can no longer rescale the stiffness and damping
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Three-Link Swimmer Optimal Gaits: Suboptimal Passive Components
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Figure 2.7: Results for the suboptimally-tuned passive three-link swimmer across
our three objective functions: (a) The maximum-speed gait superimposed on the
forward-motion CCF. With fixed passive coefficients, optimizing for speed results
in a single best gait with frequency dependent on the passive parameters. The
gait uses high-order motion at the active joint to compensate for poor passive-
properties, resulting in asymmetric motion. Asymmetry highlighted using a sym-
metric grey dashed line. (b-c) Mechanical efficiency of the passive three-link swim-
mer at various input sinusoids for the mechanical power objective function. Con-
sidering only mechanical power costs without fixing a power budget results in an
optimal gait with near zero input motion. (d) Results for optimizing a gait while
taking into account a metabolic energy drain rate of γm = 0.05. Considering
metabolic costs causes the optimizer to compromise between speed and energy
expenditure. (e-f) Locomotive efficiency of the passive three-link swimmer when
considering metabolic drain. Taking into account energy overhead for the swimmer
results in a non-trivial optimal gait even without constraining the optimization to
a power budget.
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coefficients to shift an arbitrary passive-dynamic limit cycle to any desired input

frequency. Under this condition it no longer makes sense to restrict gaits to unit

power consumption, because behavior will not scale cleanly over different power

budgets. For fixed-coefficient swimming systems, we must therefore define a new

set of objective functions.

The first of these objective functions is the locomotor speed,

ηv =
D

T
, (2.40)

where D represents the net forward displacement of the swimmer per gait cycle

and T is the gait period. This quantity gives a measure of how far the swimmer

will travel using a certain gait in unit time.

For our second optimization function, we choose mechanical efficiency,

ητ =
D

Eτ

. (2.41)

By dividing gait displacement by the energetic cost, we find how far the swimmer

can travel per unit energy sent to the control motor.

The final objective function takes into account both actuator power consump-

tion and other miscellaneous energy overhead via a metabolic rate γm that rep-

resents the rate of time-dependent energy expenditures, such as processor power

consumption:

ηm =
D

Eτ + γmT
. (2.42)
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2.3.3 Results of Optimization

In the following text, we discuss the results of optimizing passive gaits on our

two swimmers when passive coefficients are frozen at arbitrary suboptimal values.

In particular, we used a stiffness coefficient of 0.075 and a damping coefficient of

0.01 for both systems. We first discuss the effects of optimizing each of our three

objective functions on both systems. Unlike fully actuated swimmers, which can

locomote arbitrarily fast, passive swimmers have a bounded maximum speed be-

cause of the passive-dynamic interaction. Moving at too high a frequency produces

straight-line gaits in shape space that produce no net locomotion [49]. The max-

imum speed gait for both systems consists of an active joint input at a moderate

frequency that is predominantly a first-order sinusoid with small high-order aug-

mentations that provide beneficial characteristics in the shape space. Optimizing

for efficiency with respect to actuator energy expenditure produces trivial zero-

motion gaits that would cause swimmers to take infinite time to traverse between

any two points. Adding metabolic considerations to the energy expenditure cost

produces a range of non-trivial efficient gaits.

We then discuss how allocating a power budget affects optimal motion for swim-

mers with fixed passive coefficients. We see that increasing budgets for mechanical

power expenditure allows for increased gait frequency and input motion magni-

tude. Beyond the budget required for the maximum-speed gait however, there are

no benefits to increasing the power budget because it is not possible for the system

to move faster with the additional energy.
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Figure 2.8: Effect of adding high-order terms to the fixed-coefficient optimal speed
gait for the three-link swimmer: The optimal speed gait is shown (red line) su-
perimposed on the forward-motion CCF (contour plot) alongside the effects of
performing only the first-order terms of the same gait (red dotted line). The high-
order terms aid the gait by slightly extending the gait along the positive-motion
black diagonal area of the CCF while reducing the amount the gait enters the
negative-motion red area.

Speed - The fixed-coefficient passive swimmers each have a bounded upper

limit on speed, even with an unbounded power budget, because of the passive

dynamics between the active and passive joints [49]. At high input frequencies,

the passive response phase lag shifts so that there is very little resultant net motion.

Results for optimizing swimmer speed are illustrated in Fig. 2.7(a) for the

three-link swimmer and in Fig. 2.9(a) for the fish-tail swimmer. Both have very

similar characteristics. The optimizer tends to converge towards a predominantly
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sinusoidal input with a small amount of high-order motion. The high-order motion

compensates for the imperfect tuning of the passive parameters by ‘flicking’ the

passive tail and achieving beneficial characteristics in shape space. The contribu-

tion of high-order motion to the optimum-speed gait for the three-link swimmer

is shown in Fig. 2.8. This additional high-frequency motion is rather expensive,

however, requiring a large amount of energy to be supplied to the actuator, and

disappears from optimal results as the power budget is reduced.

For the arbitrary suboptimal coefficients we chose, the optimizer found the op-

timal gait frequency to be approximately 1.85 Hz for the three-link swimmer and

1.95 Hz for the fish-tail swimmer. These optimal frequencies depend on the partic-

ular passive coefficients that are chosen for each system alongside the shape-mode

description. Because of the different mechanics of the passive-elastic components,

the only way to ‘fairly’ compare these two shape modes is by using the equal-power

optimally-tuned results given in Fig. 2.6.

For the suboptimal passive coefficients we chose, the three-link maximum-speed

gait locomotes at approximately 80% of the speed of the optimal-coefficient gait

when the latter is performed at the same level of power exertion. For the fish-tail

swimmer, the fixed-coefficient optimal-speed gait locomotes at roughly 75% of the

speed of the corresponding optimal-coefficient fish-tail gait.

Mechanical Efficiency - Optimizing for gaits that are efficient with respect

to the mechanical cost of transport does not produce motions that would be useful

for physical swimmers. The optimizer converges to asymptotically-zero amplitude,

producing zero-motion gaits that would take infinite time to traverse between any
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Figure 2.9: Results for the passive fish-tail swimmer across our three objective
functions: (a) The maximum-speed gait (superimposed on the forward-motion
CCF), which consists of a large sinusoid input augmented with a small amount of
high-order motion that widens the gait in shape-space. (b-c) Locomotive efficiency
of the passive fish-tail swimmer at simple input sinusoids for the mechanical power
objective function. Considering only mechanical power costs results in an optimal
gait with near zero input motion. (d) Results for optimizing a gait while taking
into account a metabolic rate of γm = 0.05. (e-f) Locomotive efficiency of the
passive fish-tail swimmer when considering metabolic drain. Taking into account
energy overhead for the swimmer results in a non-trivial optimal gait.
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Figure 2.10: Optimal speed behavior over various power budgets and gait fre-
quencies for the fixed-coefficient three-link swimmer. (a) Surface plot of optimal
gait speeds over input power budgets and gait frequencies. Each node represents
an individual gait speed optimization problem at a constrained level of maximum
average power consumption and constrained input frequency. The red line rep-
resents the Pareto frontier that results from relaxing the frequency constraint in
the optimizations. Over this Pareto frontier, gait speed trades off with power con-
sumption. (b) Contour map of the same plot. Optimal frequency and gait speed
increases with increasing power budget until the global maximum speed gait can
be executed, after which there is no benefit or change in behavior from increasing
power budget.
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two points. This lack of motion is because power consumption increases more

quickly than locomotive distance as active joint motion increases. Fig. 2.7(b-c)

and Fig. 2.9(b-c) show mechanical efficiency across input sinusoid amplitudes and

frequencies for both the three-link swimmer and fish-tail swimmer. Both efficiency

surfaces indicate that minuscule gaits produce the most efficient motion when

considering only actuator energy costs. For real-world swimmers, such low-motion

gaits would produce negligible locomotion speeds and would not be useful for real-

world applications. We can, however, indirectly optimize for mechanical efficiency

by allocating a power budget and finding the highest speed possible that makes

use of that budget. Performing this optimization across multiple power budgets

results in a Pareto frontier of gaits across the dual objective functions of power

expenditure and speed. We will discuss results of this process in §2.3.4.

Metabolic Efficiency - Physical implementations of these swimming systems

will have continuous sources of energy loss other than the actuator, such as proces-

sor power consumption. These metabolic costs can be included into the energetic

efficiency by introducing a component that scales with the metabolic rate γm and

the gait time period T . This produces a new metabolic energy objective function

that encourages the optimizer to find gaits that balance speed and energy costs.

This objective function, expressed in Eq. (2.42), allows for efficiency optimizations

that produce meaningful results.

Optimizing with this new objective function produces results that change along-

side the metabolic rate. When the swimmer metabolism is near zero, optimiza-

tions converge towards low displacement gaits that prioritize reduction of actuator
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effort over actual locomotion, giving results similar to mechanical efficiency op-

timization. For swimmers with very high metabolic costs, the time-scaling term

dominates the energy consumed by the active joint and the swimmer is encouraged

to find speedy gaits. Such optimizations produce speed-optimal gaits like those

shown in Fig. 2.7(a) and Fig. 2.9(a). Middling metabolism values, where metabolic

costs rival transport costs and neither of the terms dominate, produce gaits that

compromise between these two extremes. An example of such a metabolic gait

is illustrated in Fig. 2.7(d) for the three-link system and in Fig. 2.9(d) for the

fish-tail system. By optimizing for a metabolic rate γm = 0.05, we find a non-

trivial optimal gait for each system that is much more energetically efficient than

the max speed gait. Fig. 2.7(e-f) and Fig. 2.9(e-f) show metabolic efficiencies for

the two swimmers across different sinusoidal inputs. Unlike the mechanical power

objective function shown in Fig. 2.7(b-c) and Fig. 2.9(b-c), the metabolic objective

function results in non-trivial optimal gaits even without mandating a minimum

energy expenditure.

2.3.4 Effects of Allocating Power Budgets

In our previous work [20] we found efficient gaits by allocating an energy budget

and finding the highest-speed gait that made use of this budget. The methodology

of optimizing for speed given a power budget rather than directly for mechanical

efficiency produces a single non-trivial gait that both maximizes speed-at-power

and minimizes power-at-speed. For the fully active problem this most-efficient gait
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gives the optimal solution at any desired power level by a simple time-scaling of

the same path through shape space. As we showed in §2.3.1, this time-scaling

property of the optimal gait across all power budgets can be extended to passive

systems with mutable passive coefficients by rescaling the system stiffness and

damping alongside the gait frequency. This solution is less simple for passive

systems with predetermined immutable coefficients, however, because the elastic

joint reacts differently to a high-power input than it does to a low-power input.

For the fixed-coefficient passive problem, different energy budgets will result in

differently-shaped gaits until the budget exceeds that of the maximum speed gait.

Although we cannot perform a simple time rescaling of a particular optimal

gait for fixed-coefficient passive systems, we can examine the results of speed op-

timizations across different power budget allocations. In Fig. 2.10(a-b) we show

optimization results for maximum possible speed across problems of constrained

frequency and constrained maximum average power exertion. In these figures, each

point on the greyscale surface is the result of an individual speed-optimization prob-

lem subject to the corresponding power and frequency constraints. The red curve

represents the optimization problem of constrained power exertion while allowing

the frequency to become an optimization variable. This line represents a Pareto

frontier of optimal gaits over the two competing objective functions of gait speed

and gait power consumption.

At low levels of power exertion, the motor cannot output enough acceleration

to keep up with the best possible overall input frequency, so lower frequencies are

more successful. As the power limit constraint is relaxed, the optimal frequency
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and speed increases until the maximum-speed frequency is reached. Past this

point, increasing the power budget provides no benefit, as the motor is already

capable of performing the maximum speed gait. Results for the fish-tail system

are qualitatively identical to those of the three-link system.

2.3.5 Transfer-Function Linearization of Passive Dynamics

In this section, we lay out a method for the transfer-function linearization of pas-

sive dynamic systems. We first discuss a theoretical overview of how the passive

linearization works and when it should be used, and then derive the linearization

formuli in their entirety.

2.3.5.1 Overview

Our previous work [49] optimizing passive swimming in low Reynolds-number sys-

tems used Laplace transforms and frequency-space analysis to estimate the passive

joint limit cycles. Crucial to this previous work was the approximation that the

metric M is constant, which allowed us to perform Laplace transforms and directly

estimate the passive transfer function. Unfortunately, this technique is not suitable

for inertia-dominated swimmers. The reduced mass matrix Mr is heavily depen-

dent on r, so the assumptions required for frequency domain analysis are no longer

valid. Additionally, assuming that M(r) is constant on r eliminates our ability to

factor in centrifugal and Coriolis forces, as these are calculated from derivatives
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of the mass matrix. For inertial systems, we can no longer directly calculate the

transfer function, and must instead approximate it numerically.

However, we can use the estimated limit cycle as a linearization point. This

linearization allows us to estimate how the passive component of the gait will

respond to changes in input motion and is useful for shaping passive responses. For

simple passive systems, the limit cycle response to a sinusoidal input can be found

by scaling and phase-shifting the input signal. This action of scaling and phase

shifting the input signal is often referred to as the transfer function. Using the

Fourier transform to break complex signals into a finite number of simple sinusoids,

we can calculate the transfer function for each of the input/output Fourier sinusoid

pairs. We then linearize around these Fourier parameters by enforcing that each

transfer function stays accurate at nearby input points. This linearization process

is illustrated in Fig. 2.11.

This process allows direct shaping and manipulation of passive motion to suit

an objective function, even for slightly nonlinear systems. Given an input function

and the passive response, we can reliably estimate exactly how to adjust the active

input to achieve desirable passive output motion.

There are two primary assumptions required for this approach to linearizing

passive dynamics. The first assumption is that the passive components are not

heavily nonlinear. In effect, the passive components must have approximately

symmetric spring and damping coefficients in the relevant shape-space regime.

It is possible to reliably linearize more complicated systems, such as those with

asymmetric or nonlinear spring functions, but the process is slightly more involved.
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Figure 2.11: Linearized Passive Response to Input Perturbation: When a pair
of control input Fourier coefficients are perturbed a small amount, the transfer-
function linearized response of the corresponding passive coefficients is to maintain
the same phase offset and amplitude ratio relative to the forcing input. In the
Fourier plane, the perturbed input and linearized perturbed response make similar
triangles with the original input and original passive response. This linear approx-
imation can be used to generate gradients useful for gradient descent on passive
dynamics.

We intend to expand this in future work.

The second assumption required for this approach is that there is sufficient

shape activity to excite the passive dynamics. Gaits with very low motion will not
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produce a measurable output response, making observing the transfer function

impossible. To account for this, at each input-output coefficient pair, we check

to see if the input magnitude exceeds some minimum threshold that is sufficient

to excite measurable passive dynamics. For input-output pairs that exceed this

minimum excitation, we can expect accurate results using the methods described

above. For signals that do not minimally excite the passive dynamics, we instead

approximate the transfer function using the magnitude-averaged transfer functions

at other frequencies.

2.3.5.2 Derivation

First, we note that each of the pairs of Fourier coefficients from our input control

function in (2.17) are innately expressed in the Cartesian coordinate frame (ac,bc).

We can equivalently express them using the magnitude Mc and phase θc in polar

coordinates using the amplitude-phase coordinates (Mc,θc). From here on, we

drop the subscript i from (2.17) for readability and will only discuss one of the

n input-output Fourier coefficient pairs, because the derivation is the same for all

pairs,
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Mc =
√
a2c + b2c

θc = tan−1(bc/ac)

ac = Mc cos θc

bc = Mc sin θc.

(2.43)

We write the passive response Fourier coordinates in the polar frame (Mu,θu)

and Cartesian frame (au,bu) using the numerically observed transfer function.

Specifically, we write them in terms of the magnitude output/input ratio R and

phase-shift ∆θ,

Mu = RMc

θu = θc +∆θ

au = Mu cos θu = RMc cos(θc +∆θ)

bu = Mu sin θu = RMc sin(θc +∆θ).

(2.44)

The bulk of this derivation comes from noting that the transfer function mag-

nitude ratio and phase shift values act conveniently in the Fourier-plane polar

coordinates, and using these simple polar transforms to perform analysis on the

Cartesian coordinates for the input and output Fourier expressions of the swim-

mer shapes. The transfer function values R and ∆θ can be calculated from a

numerical simulation of a single gait by fitting an nth-order Fourier series to the
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periodic passive response and estimating the transfer function values for each set

of active-passive coefficient pairs,

R =
Mu

Mc

, (2.45)

∆θ = θu − θc. (2.46)

We then assert that these transfer function values will stay approximately con-

stant at nearby input parameters and use them to calculate gradients of the passive

response parameters with respect to the control parameters

∂ap
∂pc

≈ ∂Mc

∂pc
R cos(θc +∆θ)− ∂θc

∂pc
RMc sin(θc +∆θ),

∂bp
∂pc

≈ ∂Mc

∂pc
R sin(θc +∆θ) +

∂θc
∂pc

RMc cos(θc +∆θ).

(2.47)

Here, we use pc as a stand-in for either ac or bc because the equations are the

same for both. The gradients of the control magnitude are found from Eq. (2.43)

by

∂Mc

∂ac
=

ac√
a2c + b2c

=
ac
Mc

∂Mc

∂bc
=

bc√
a2c + b2c

=
bc
Mc

,

(2.48)

and similarly the gradients of the control phase are found as
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∂θc
∂ac

=
−bc
M2

c

∂θc
∂bc

=
ac
M2

c

.

(2.49)

This method allows for the calculation of gradients of most of the passive

Fourier coefficients with respect to the active Fourier coefficients. However, there

are two sets of gradients that cannot be cleanly calculated using this method:

gradients with respect to the controlled offset parameter ac,0 and gradients with

respect to the control frequency ω. To estimate these gradients, we make two

assumptions. The first is that changing the control offset parameter elicits only a

small response to the uncontrolled Fourier parameters pu that can be neglected,

since the passive response will stay centered around zero deflection for symmetric

springs and dampers

∇ac,0pu = 0. (2.50)

The second assumption is that the passive response frequency will be the same

as the control input frequency,

∂ωu

∂ωc

= 1. (2.51)

This assumption should be valid so long as the gait is allowed to reach the limit

cycle and there are minimal external periodic forces acting through the fluid.
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Because we cannot calculate derivatives of the transfer function using our single

sample point, we cannot estimate how changing the control frequency will alter the

response. We set these other gradient values to zero and use multi-start gradient

descent to encourage full exploration of the frequency space.

Equations (2.47-2.51) produce accurate approximations of the true gradients

whenever the magnitude Mc is sufficiently large that it causes a meaningful passive

response and the singularity at Mc = 0 is avoided. In order to extract meaningful

transfer function values, we need to minimally excite the passive dynamics at that

frequency and observe the response. However, this minimal excitation is not always

guaranteed. It is not a given that optimal gaits will have significant activity across

all of the Fourier components, so we need to adapt these equations to be accurate

when Mc is small.

We perform this adaptation by saying that the transfer function values for input

parameters near zero be approximated by using the magnitude-averaged transfer

functions for the rest of the Fourier components

Ravg =

∑
MiRi∑
Mi

∆θavg =

∑
Mi∆θi∑
Mi

.

(2.52)

We then choose some threshold ϵ for minimum excitation magnitude past which

we can extract meaningful information from the passive response. For the simu-

lated systems discussed in this chapter, we found success by choosing the mini-
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mum magnitude to be one angular degree of excitation at that frequency, although

this value will likely have to be increased for experimental systems where limita-

tions on passive joint sensing resolution will come into play. We then produce

weighted transfer function values Rw and ∆θw for each Fourier frequency that

use the magnitude-averaged values for magnitudes of zero and smoothly scale to

the numerically predicted transfer function values when the magnitude reaches

the minimum excitation value. This produces equations like so for low-excitation

magnitudes Mc < ϵ,

Rw = R
Mc

ϵ
+Ravg

(
1− Mc

ϵ

)
∆θw = ∆θ

Mc

ϵ
+∆θavg

(
1− Mc

ϵ

)
.

(2.53)

We can then substitute these weighted transfer function values into (2.44) and

again calculate the gradients to get the following equations
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∂au
∂pc

≈

∂Mc

∂pc
Rw cos(θc +∆θw)−

∂θc
∂pc

RwMc sin(θc +∆θw)

+
∂Rw

∂pc
Mc cos(θc +∆θw)−

∂∆θw
∂pc

RwMc sin(θc +∆θw),

∂bu
∂pc

≈

∂Mc

∂pc
Rw sin(θc +∆θw) +

∂θc
∂pc

RwMc cos(θc +∆θw)

+
∂Rw

∂pc
Mc sin(θc +∆θw) +

∂∆θw
∂pc

RwMc cos(θc +∆θw).

(2.54)

Gradients of the weighted transfer function values with respect to the Fourier

coefficients at this frequency are found by the chain rule as

∂Rw

∂pc
=

∂Rw

∂Mc

∂Mc

∂pc
∂∆θw
∂pc

=
∂∆θw
∂Mc

∂Mc

∂pc
,

(2.55)

The gradients of magnitude with respect to Fourier parameters can be found

in (2.48), and the gradients of the weighted transfer function values with respect

to the control magnitude are found as
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∂Rw

∂Mc

=
R

ϵ
− Ravg

ϵ
+

∂Ravg

∂Mc

(
1− Mc

ϵ

)
∂∆θw
∂Mc

=
∆θ

ϵ
− ∆θavg

ϵ
+

∂∆θavg
∂Mc

(
1− Mc

ϵ

)
,

(2.56)

Finally, we calculate the gradients of the magnitude-averaged transfer function

values with respect to the control magnitude

∂Ravg

∂Mc

=
R
∑

Mi −
∑

(MiRi)

(
∑

Mi)2

∂∆θavg
∂Mc

=
∆θ
∑

Mi −
∑

(Mi∆θi)

(
∑

Mi)2
.

(2.57)

These equations are sufficient to reliably predict changes in output passive mo-

tion given changes in input motion. Equations (2.47-2.51) are used for Fourier com-

ponents with sufficient excitation, and Equations (2.52-2.57) are used for Fourier

components that are not minimally excited. Fig. 2.12 compares predictions from

this linearization to the full simulated dynamics of the passive Purcell swimmer

used in this work.

Overall, the process of linearizing passive dynamics is as follows: We first ob-

serve the steady-state passive response to the control input and fit the passive

response to an nth-order Fourier series. For each of the n sets of input-output

Fourier coefficients, we determine if the control input magnitude exceeds our min-

imum excitation threshold. Based on this determination, we either calculate the

transfer function from the fit of the passive response or estimate the transfer func-
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Figure 2.12: Comparison of linearized dynamics to the ground truth response at an
example gait for the passive Purcell swimmer in Fourier space. For a set of input
perturbations in a circle around the original input in Fourier space, the linear
response predictions form a circle around the original passive response. These
predictions match the elliptical ground truth responses closely enough to perform
reliable gradient descent.

tion from the activated sets of coefficients. Once we have an approximate transfer

function for each Fourier input-output pair, we estimate the gradients of the pas-

sive response coefficients with respect to the input signal coefficients by asserting

that the transfer function is locally constant to the input parameters. In prac-

tice, this transfer-function gradient calculation looks like forming pairs of similar

triangles in parameter space, as illustrated in Fig. 2.11.
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For an infinitesimal sphere of perturbations about the original input signal in

Fourier space, every point on the perturbation sphere maps to a point on the linear

response perturbation ellipsoid. This ellipsoid provides a first-order fit of the true

nonlinear perturbation response projection and is sufficiently accurate to indirectly

shape the passive signal by varying the input parameters. We will use this method

in later sections of the chapter to simultaneously shape the active joint and passive

joint response to optimize the speed and energetic objective functions via gradient

descent.

2.3.6 Performing Gradient Descent

In this section, we cover the process of estimating gradients of the objective func-

tions introduced in §2.3.2. We first provide an overview of the process, and then

derive specific gradients useful for the calculations used in this work.

2.3.6.1 Overview

In addition to providing intuition, the CCF is also useful for estimating gradients

of displacement with respect to a gait’s path through shape-space. This makes it

possible to perform gradient descent on our previously proposed objective functions

by varying the gait parameters that control the motion of the active joint. In

general, our approach is to vary these active parameters, use the linearized passive

dynamics from §2.3.5 to predict variation in passive shape-mode behavior, and
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combine both of these gait alterations on the CCF to examine how altering these

control parameters changes the net displacement over the cycle. We can use similar

techniques to estimate gradients on gait period and total power consumption to

shape gaits that optimize for speed and energetic efficiency. By using a gradient

descent solver that allows nonlinear constraints such as MATLAB’s fmincon, we

can add additional realism to the problem, such as limits on maximum actuator

acceleration and bounds on allowable joint motion.

First, we explicitly choose our optimization parameters. These will be the n

pairs of Fourier coefficients a1−n and b1−n, the Fourier offset coefficient a0, and the

gait frequency w. From an arbitrary seed gait, we perform the numerical dynamic

gait simulation, calculate the gait’s net displacement and cost, and fit the passive

joint response to an nth order Fourier series. This fitting allows us to estimate

gradients of the passive response Fourier parameters using the linearized passive

dynamics outlined in §2.3.5.

By taking sequences of partial derivatives of the Fourier formulation (2.17),

we can determine gradients of shape ∇pr, gradients of shape velocity ∇pṙ, and

gradients of shape acceleration ∇pr̈ with respect to all of the active and passive

Fourier coefficients p for all points on the gait. These gradients are derived explic-

itly in §2.3.6.2. We also take derivatives of the components of each of our objective

functions η with respect to the gait parameters, finding gradients of displacement

∇pD, gradients of mechanical cost ∇pEτ , and the gradient of gait period ∇pT ,

all in terms of the Fourier gradients described above. As part of this process, we

evenly sample gait properties across the gait cycle so that total behavior over the
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gait is taken into account. This process is performed in §2.3.6.3. We can then

estimate the gradients of our chosen objective function with respect to the active

and passive Fourier parameters.

Once we have gradients of the chosen objective function with respect to all

of the active and passive Fourier parameters, we can use the linearized passive

dynamic gradients from §2.3.5 to take into account how changing a control input

optimization parameter pc will also change all of the passive Fourier parameters

∂η

∂pc,full
=

∂η

∂pc
+
∑
i

∂η

∂pu,i

∂pu,i
∂pc

. (2.58)

These final gradients allow us to perform gradient descent on our chosen ob-

jective function to simultaneously shape the control joint and passive joint path

through shape space in a way that maximizes displacement subject to some cost.

For the systems discussed in this chapter, we fix the control parameter ac,0 at

zero because it is unlikely that joint bias will produce gaits with optimal forward-

direction behavior. We leave the control frequency parameter wc free-floating de-

spite the incomplete passive dynamic gradient to leverage information about how

it changes gait period, and use multi-start gradient descent for wc in order to en-

sure the adequate exploration of the frequency parameter. We also add adjustable

joint limit constraints and joint acceleration constraints to reflect actuator limi-

tations and use MATLAB’s fmincon to perform gradient descent subject to these

nonlinear constraints.
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2.3.6.2 Gradients of the Fourier Series

In order to perform gradient descent on the optimization coefficients that control

active joint motion, we must calculate gradients of shape, shape velocity, and

shape acceleration with respect to the active and passive Fourier parameters. For

a nth order Fourier parameterization, we are concerned with gradients on the offset

parameter, a0, the pairs of Fourier coefficients at each Fourier frequency a1−n, and

b1−n, and the fundamental frequency ω. As these equations are the same for both

of the two sets, we will show only calculations for a set of Fourier parameters on

arbitrary joint j. We start with the Fourier parameterization of the gait shape on

joint j,

rj = a0 +
n∑

i=1

(ai cos iωt+ bi sin iωt). (2.59)

From this, the gradients of shape with respect to our Fourier parameters ∇prj

can be calculated

∂rj
∂a0

= 1,

∂rj
∂ai

= cos iωt,

∂rj
∂bi

= sin iωt,

∂rj
∂ω

= −itai sin iωt+ itbi cos iωt.

(2.60)

Next, we take a time-derivative of (2.59) to get shape velocity in terms of the



65

Fourier parameters over the course of the gait

ṙj =
n∑

i=1

(−iωai sin iωt+ iωbi cos iωt), (2.61)

and then use this parameterization to calculate ∇pṙj

∂ṙj
∂a0

= 0,

∂ṙj
∂ai

= −iω sin iωt,

∂ṙj
∂bi

= iω cos iωt,

∂ṙj
∂ω

= −i2ωtai cos iωt− i2ωtbi sin iωt.

(2.62)

Finally, we take a time-derivative of (2.61) to parameterize shape acceleration

from the Fourier coefficients

r̈j =
n∑

i=1

(−i2ω2ai cos iωt− i2ω2bi sin iωt), (2.63)

and use this parameterization to calculate ∇pr̈j
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∂r̈j
∂a0

= 0,

∂r̈j
∂ai

= −i2ω2 cos iωt,

∂r̈j
∂bi

= −i2ω2 sin iωt,

∂r̈j
∂ω

= i3ω2tai sin iωt− i3ω2tbi cos iωt.

(2.64)

2.3.6.3 Gradients of the Objective Functions

We propose three objective functions for which we can optimize the gaits of our

underactuated swimming systems. Here, we will show calculations for gradients

of these objective functions with respect to all of the active and passive Fourier

parameters. The first of the objective functions is swimmer speed,

ηv =
D

T
. (2.65)

We calculate the gradient of speed with respect to the Fourier parameters as

∇pηv =
∇pD

T
−D

∇pT

T 2
. (2.66)

The calculation of ∇pD is described in detail in our previous work [46, 48, 49],

but for completeness we provide a brief outline here. We first approximate the gait

as n evenly-spaced points connected by line segments. Each point rk along the gait

forms a triangle with its neighbors rk−1 and rk+1. For each point, we care to find
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how the area of this triangle changes on the Fourier parameters, and multiply this

with the value of the CCF at rk calculated from (2.20) giving an estimate of how

the motion of this point contributes to locomotion in the desired direction.

This process is made fairly simple by recognizing that only the outward motion

of rk with respect to this triangle will contribute to area change in the triangle.

We can calculate the direction of outward motion ê⊥ as being perpendicular to

the vector along the base of the triangle ê∥. This value is found using central

differencing

rk+1 − rk−1 = e∥ = ℓê∥, (2.67)

where ℓ is the base length of the triangle. This vector is rotated depending on the

chirality of the gait such that ê⊥ points in the outward direction. We can then

find the outward component of the gradient of gait shape at this point

∇prk,⊥ = ∇prk · ê⊥ (2.68)

and use this value along with the CCF at each point to estimate the gradient of

locomotion in the desired direction, taking care not to confuse net gait displacement

D with the value of the CCF DAk

∇pD =
n∑

k=1

(
ℓ

2
∇prk,⊥DAk

)
. (2.69)

The gradient of the gait period ∇pT is very easy to calculate from its defi-

nition T = 2π/ω because the only parameter that affects the gait period is the
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fundamental frequency of the active joint

∂T

∂ω
= −2π

w2
. (2.70)

The second objective function we consider is the energetic efficiency

ητ =
D

Eτ

, (2.71)

which has a gradient similar to that of speed

∇pητ =
∇pD

Eτ

−D
∇pEτ

E2
τ

. (2.72)

Here, the only missing piece is the gradient of the energetic cost. We start by

phrasing this as the integral of absolute mechanical power required to enforce gait

motion of the active joint over the limit cycle ϕ of the gait through shape space

Eτ =

‰
ϕ

|τcṙc|dr. (2.73)

We can calculate this gradient as

∇pEτ =

‰
ϕ

sign(τcṙc)(ṙc∇pτc + τc∇pṙc)dr. (2.74)

The gradient of active joint velocity ∇pṙc is found by (2.62), noting that the

gradients of the active joint velocity with respect to the passive Fourier parameters

are all zero. We then calculate ∇pτ by applying the gradient ∇p to each of the

terms in (2.14). Refer to Appendix D of our previous work [20] to see the details
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of this lengthy calculation.

The final objective function we consider in this chapter is the metabolic effi-

ciency, which takes into account some metabolic rate γm,

ηm =
D

Eτ + γmT
. (2.75)

This gradient can be calculated using the tools given above,

∇pηm =
∇pD

Eτ + γmT
−D

∇pEτ + γm∇pT

(Eτ + γmT )2
. (2.76)

2.4 Conclusion

In this work, we showed that geometric mechanics provides a computationally sim-

ple framework for finding optimal gaits in inertial systems with passive elements.

We described a process for optimizing swimming system for cases where swimmer

passive parameters can be optimized alongside swimmer gait motion and for cases

where swimmer passive parameters are fixed in place. We believe that these tools

can accelerate the design process for locomoting systems with passive-elastic com-

ponents by identifying promising families of motion, and that this analysis provides

fundamental intuition that can be useful for the development of such systems.

We considered two models of inertial swimming systems with passive-elastic

components. We used the passive three-link swimmer as a simple model to discuss

gaits that leverage passive dynamics to optimize swimmer behavior. Then, we pre-

sented a fish-tail swimmer to demonstrate how to geometrically represent continu-



70

ously flexible systems and showed that this flexible swimmer leverages properties

of motion that are qualitatively similar those used by the three-link swimmer.

By using passive parameters optimized for each system’s unit-power limit cycle,

we were able to generate the fairest possible comparison between the two systems,

showing that a well-tuned fish-tail swimmer using our chosen curvature mode can

be 20% faster than a well-tuned three-link swimmer at identical levels of power

consumption.

For both of these swimming systems, we discussed results from optimizing with

respect to three objective functions. We showed that optimizing with respect to

speed produces a single highest-speed gait consisting of a simple sinusoid that in

cases of suboptimal passive properties is augmented with a small amount of high-

order motion that has beneficial characteristics in the swimmer shape space. This

maximum speed is limited by the passive dynamics of the swimmer: attempting to

increase motor frequency beyond this point without change to passive coefficients

elicits a response with poor behavior in shape space. We also show that efficiency

objective functions that take into account only motor power consumption result

in zero-motion optimal gaits that would not actually be useful for a swimmer

attempting to travel between two points. This result aligns with our previous

findings for passive swimmers in the drag-dominated regime [49]. Finally, for

both classes of swimmer, we demonstrate that including metabolic overhead in

the energy expenditure calculation results in a range of useful gaits that produce

nontrivial efficient locomotion.

In future work, we intend to investigate selection of passive shape-modes that
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are most efficient for locomotion. Here, we assumed linearly varying mechanical

properties across the length of our fish-tail swimmer, resulting in a particular pas-

sive shape mode that was more efficient than the three-link system. By intelligently

choosing the moment of inertia of the tail along the backbone, we could attempt

to design and optimize passive responses that are even more useful for locomotion.

We also hope to examine swimmer locomotion in non-perfect fluids that allow for

fluid drag and attempt to find optimal gaits for geometric swimming systems with

both hydrodynamic mass and drag. Finally, we aim to extend this methodology to

more complex systems, such as those with nonlinear springs that have been shown

to have beneficial swimming properties in the past [54] or to systems with multiple

active and passive shape modes, allowing for the modeling of traveling waves.
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Chapter 3: Locomotive Analysis and Thruster Design for a Robotic

Sea Salp

3.1 Introduction

In this chapter, we study the locomotive properties of sea salps, which are chains of

individual jellyfish-like agents. By individually thrusting through hydrodynamic

jet mechanisms, they are capable of large-scale emergent locomotion that produces

fluid flow over each zooid element of the chain [60]. These organisms execute

unique gait patterns that arise from collective zooid action [13]. Sea salp biology

is pictured in Fig. 3.1.

Our efforts here will be collected on two fronts. The first is to build a framework

for a mathematical simulator that allows us to study the properties of salp locomo-

tion and the emergent body structures that result from individual zooid thruster

activity. For our second effort, we will design a soft origami thruster mechanism

driven by twisted-and-coiled actuators that can be used to drive aquatic salp-

inspired robots.

We hope that by studying salp locomotion, we can enable a new class of hydro-

dynamic swimming systems and learn more in turn about the physics and collective

properties that drive the formation of biological salp structures.
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Figure 3.1: The biology of the sea salp. a) An individual zooid jellyfish-like agent
that can produce period thrust by forcing water through its body. b) A chain
of zooids that form the salp. Through individual agent action and the flexible
connection between zooids, the salp takes on a larger structure that has favorable
locomotive properties. Figure borrowed from the work of Kelly Sutherland [61],
who we collaborated with on this project.

3.2 Locomotive Analysis

We model the sea salp as a modular series of individual zooid agents, each with a

periodically firing thruster. We model each element as existing in a drag-dominated

environment where fluid drag forces dominate inertial effects. This modeling effort

will be similar in concept to recent works done analyzing kinematic snake robots

actuated by wheel side-thrusts [64].

To allow for a variety of mechanical designs, we choose two ways of enabling

flexibility within the system. In the first method, we assume that the individual

zooid elements are rigid but are linked by passive, flexibly elastic joints at the

discrete connection points. This means that for an n-link chain of zooid agents,
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there are n−1 degrees of freedom that can be parameterized by the angles between

the rigid links. In the alternative representation of the salp system, we attempt

to address the continuum flexibility of biological salps by representing each agent

as elastic rather than rigid. For simplicity, we model each zooid element as being

capable of developing constant curvare over the arclength of the element. This

means that for an n-segment chain of zooid agents there are n degrees of freedom,

each parameterized by the curvature of that salp segment. We leverage our previous

works to develop models for both of these systems [48], which are illustrated in

Fig. 3.2. For this work, we assume that the systems are travelling in the plane

and can be modelled as SE(2) locomotors, and that we can ignore the influence of

gravity on the links because gravity acts normal to the plane of translation.

3.2.1 N-Link Chain Salp Model

To begin constructing our model for the N-Link Chain salp, we first construct a

coordinate frame for the robot. From previous work [21], we have found that an

appropriate choice of body coordinates for chain systems is located at the average

of the link centers and oriented along the average of the link orientations.

From this frame, we can build a mobile Jacobian for each arclength point s

along the spine of the salp that maps planar translations and rotations of the body

frame
◦
g and joint velocities ṙ to motion of that point through the instantaneous

optimal coordinate frame,
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Figure 3.2: Illustrations of the shape deformations of the two salp systems we
model in this work along with their shape parameterizations: (a) The N-Link
chain model of the salp, with rigid links and passive flexibility between the zooids.
Each link is acted on by a thruster that exerts a time-dependent force on the link.
(b) The Piecewise-Constant Curvature (PCC) model of the salp, with flexible
segments that are each capable of developing constant curvature across the link
arclength. (c) The shape parameterization of the N-Link chain model. Curvature
is zero across the arclength except for at the discrete connection points, where
the curvature is a dirac function that integrates to give values for joint angle
deflection. The salp shape is parameterized by these angular deflections. (d) The
shape parameterization of the PCC salp. Curvature is constant across each of
the independent zooid arclengths, but can instantaneously change between them.
Unlike the N-Link chain model, the tangent vectors along the backbone are first-
order differentiable.
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ẋs

ẏs

θ̇s

 = Js(s, r)

◦
g

ṙ

 . (3.1)

We define three types of force that act on the salp structure and must be at

equilibrium. The first is the drag force that results from the viscous interaction

between the fluid and the salp links as they move through the medium. The second

are the thrust forces that result from the zooid actuators. The third type of forces

acting on the salp are the restorative forces from the passive connection points.

For the first type of force, we define the physical interaction with each link

on the fluid using a low Reynolds number resistive force model, where drag forces

at each location are linearly proportional to that point’s relative velocity in the

fluid. We are particularly interested in the Jacobians at arclengths that correspond

to link centers, as these points offer convenient physical properties. At the link

centers, integrated drag force across the link can be expressed using a single force

vector that is a linear function of the velocity of that link center. For the ith link,

the drag force F d can be expressed as

F d
i = −d


ẋi

ẏi

θ̇i

 , (3.2)

where the drag matrix d is a diagonal matrix constructed from the drag coefficient

cd, the drag ratio λ, and the link length ℓ,
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d =


cdℓ 0 0

0 λcdℓ 0

0 0 λcdℓ
3

12

 . (3.3)

Because d is dependent only upon the link’s geometric design and the properties

of the surrounding fluid, we assume that each of the links in the chain has the same

drag matrix.

Using the link center Jacobians Ji, we can combine and pull back the individ-

ual drag matrix contributions to retrive the drag metric, which relates salp body

motions and joint velocities to generalized forces F d that acts each of these degrees

of freedom as a result of the viscous interaction,

F d = −D

◦
g

ṙ

 , (3.4)

where

D(r) =
∑

JT
i (r)dJi(r). (3.5)

For the second type of force acting on the salp, we develop a model for the

thruster actuators. Each actuator is capable of producing a time-dependent thrust

vector that acts on the zooid. For our simulation framework, the actuators can

be placed anywhere along the links, and there is no restriction on maximum or

minimum actuators per link. However, for the simulation results we will discuss

later in this section, we will predominantly examine salp designs where there is one
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thruster per zooid and the thrusters are coincident with the link centers. For the

jth thruster that is oriented to fire ϕj radians away from the link-frame backwards

direction, this results in an actuator force vector F a acting on the link that is a

function of the time-dependent actuator thrust magnitude fj(t),

F a
j (t) =


fj(t) cosϕj

fj(t) sinϕj

0

 . (3.6)

For our simulator, the thrust profile fj(t) can be an arbitrary function that

produces scalar value of thrust over time. For the results we present later, this

function generally falls into one of two categories. In the first category, each

actuator produces sinusoidal thrust of the same amplitude A and period T , and

adjacent actuators experience thrust magnitudes that are separated by a phase

offset ∆t. The thrust magnitude for the jth actuator is then

fj(t) =
A

2
− A

2
cos

(
2π

T
t+ j∆t

)
. (3.7)

This produces a thrust magnitude that starts at zero and sinusoidally rises to

magnitude A before falling back to zero.

Alternatively, rather than synchronizing the thrusters to a cohesive sinusoidal

signal, we can have each thruster fire stochastically and independently without

requiring knowledge of what the neighbor is doing. For this thruster model, we

still use a sinusoid to model how the thruster produces thrust while activated that

is parameterized by maximum thrust A and period T . However, rather than use
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a phase offset, we add a stochastic delay time before the thruster fires again that

is parameterized by the thruster uptime ratio η. When η is 1, the thruster fires

continuously with no break, when η is zero the thruster does not fire at all, and

when η is 0.5 the thruster will begin firing again on average T seconds after the

thruster deactivates. We produce the desired thruster uptime by enforcing a delay

period after the thruster fires choosing a random uniformly distributed number

between 0 and 2T ( 1
η
− 1), which gives on average a total period producing the

desired thruster uptime. For the most recent thruster ignition time t0, this profile

can be written as

fj(t) =


A
2
− A

2
cos
(
2π
T
(t− t0)

)
when (t− t0) ≤ T

0 when T < (t− t0) ≤ rand(T, 2T
η
− T )

 .

(3.8)

The thrust vectors that result from these actuator force profiles can be pulled

back into the salp’s body frame and summed to find the resultant generalized force

produced on each of the salp’s degrees of freedom F a(t) that results from actuator

activity,

F a(t) =
∑

JT
j F

a
j (t). (3.9)

For the final type of force that acts on the salp structure, we examine the elastic

connection between the links. For this we define a spring stiffness k between each

joint that exerts a restorative force taking the links back to a straight line when
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undriven by the actuators. We can construct a stiffness matrix K that relates the

joint angles to the generalized forces on the salp degrees of freedom F k that arise

due to the passive components. Because the only springs are on the links between

the zooid agents, all forces are internal to the salp and there are no force terms

acting on the salp’s SE(2) pose that are directly due to passive components. For

the other degrees of freedom, the stiffness matrix is a diagonal matrix turning joint

angle displacement into a restorative torque by action of the spring constant. This

force function can be expressed as

F k = −Kr (3.10)

where for an n-link chain of zooid agents the stiffness matrix is an n+ 2 by n− 1

matrix can be expressed as

K =



0 0 . . . 0 0

0 0 . . . 0 0

0 0 . . . 0 0

k 0 . . . 0 0

0 k . . . 0 0

...
...

. . .
...

...

0 0 . . . k 0

0 0 . . . 0 k



. (3.11)

We assume that these three forces are the only forces that will act on the salp

while it locomotes. Under the low Reynolds number assumption, this means that
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the forces must be at equilibrium. This produces a model whereby actuator input

and joint stiffnesses result in generalized forces on the degrees of freedom that are

immediately compensated for by a velocity on each mode that brings balance to

the forces,

0 = F d + F a(t) + F k. (3.12)

We can combine the expressions we derived from Eq. (3.4), Eq. (3.9), and

Eq. (3.10) to express this force balance in terms of the system shape and velocities,

0 = −D

◦
g

ṙ

+
∑

JT
j F

a
j (t)−Kr. (3.13)

From this, we can easily solve for the body-frame and shape velocities that give

balance to the actuator forces and passive joint torques,

◦
g

ṙ

 = D−1
(∑

JT
j F

a
j (t)−Kr

)
. (3.14)

By numerically integrating this time-dependent ODE using a tool such as Eu-

ler’s method or MatLab’s ode45, we can investigate the shape and body motion

evolution of the N-Link salp structure.
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3.2.2 Piecewise-Constant Curvature Salp Model

Derivation of the Piecewise-Constant Curvature (PCC) salp model is virtually

identical to the derivation of the N-Link Chain model, save with a different de-

scription of the shape mode parameterization on the salp which results in a different

method to pull back drag forces into the body frame.

Here, we describe how we leverage our previous works on continuously flexible

systems [28, 48] to develop a model for the salp that deforms smoothly on each

zooid element rather than at discrete joints. For the shape parameterization of

this salp, we use the curvature values of each of the zooid agents, meaning that for

an n-segment salp there will be n curvature values that together fully define the

salp shape.

We use a similar methodology for constructing the optimal coordinate frame.

The frame lies at the geometric center of the salp and is oriented along the average

orientation of the infinitesimal arclength elements.

From this frame description, we can build a Jacobian which relates the body

frame and shape motion of the salp to the resultant body-frame velocity of any

point along the arclength as a function of arclength and system shape. At each

point along the salp backbone, the lateral and longitudinal drag densities relate the

vector of fluid flow relative to the local backbone tangent vector to an infinitesimal

force that can be pulled back into the body frame. Unlike the n-link chain model

where the swimmer backbone tangent vectors are undefined at the joints, the

tangent vectors along the backbone are first-order differentiable at all points. This
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results from the connection of sequential sections of backbone by the alignment of

the corresponding tangent vectors.

Analagous to the individual drag matrix that we used to describe the physical

behavior of each link in Eq. (3.3), we can write a matrix that describes the drag

force response as a function of local velocity for each infinitesimal segment of the

salp arclength that has length δs,

d =


cdδs 0 0

0 λcdδs 0

0 0 λcdδs
3

12

 . (3.15)

Because the δs3 term is extra teensy-tiny, we can drop it from our integration

process without harm. This lets us factor out the infinitesimal drag matrix for an

infinitesimal section of salp arclength,

d =


cd 0 0

0 λcd 0

0 0 0

 δs = dPCCδs. (3.16)

Viscous resistance to rotational velocity will arise from the pullback of individ-

ual element translational resistances. This pullback is done by integrating along

the total arclength L of the salp to find the collective resistances of the salp ele-

ments expressed in the degrees of freedom on the body frame,

DPCC(r) =

ˆ L

0

J(r, s)TdPCCJ(r, s)δs. (3.17)
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Viscous drag forces that act on the salp degrees of freedom can then be ex-

pressed similar to Eq. (3.4) as

F d = −DPCC

◦
g

ṙ

 . (3.18)

As we had already expressed the thruster actuation pullback as a function of

arclength along the salp, there is no need to recalculate for the continuously flexible

system, and we can use Eq. (3.9) along with our previously discussed thruster

activation profiles to model the effect of actuation on the salp.

The pullback of the elastic stiffness from shape values into the salp’s degrees

of freedom is similarly straightforward, resulting in an n + 3 by n matrix for a

salp composed of n individual zooid segments. This resolves to be identical to

Eq. (3.11) save for one more row and column in the matrix representing the fact

that the continuously flexible salp has one more degree of freedom than its rigid-

chain counterpart.

While the stiffness for the discrete-joint shape modes was analogous to a tor-

soinal spring, the stiffness for this salp formulation is more similar to that of an

Euler-Bernoulli beam. Here, we assume that the mechanical properties of the

zooid element resist torsional deformation and when displaced result in a restora-

tive force to a straight beam segment. At each point in the beam there is an

internal moment m(s) that relates the instantaneous mechanical stiffness km(s) to

the instantaneous curvature κ(s). Together, across the beam, all of these points

act like a series of springs in parallel acting on the instantaneous local curvatures



85

that serve to pull the beam back to true. The potential energy of the ith individual

zooid segment can be expressed as

PEi =

ˆ sc,i+ℓ/2

sc,i−ℓ/2

1

2
km(s)κ

2(s)δs, (3.19)

where sc,i refers to the arclength representing the center of the zooid and ℓ repre-

sents the total zooid arclength.

By assuming that the zooid mechanical properties are constant throughout, we

can remove the dependence on s, and by defining our shape mode such that the

local curvature κ is also constant on an individual zooid agent and corresponds to

the ith shape mode ri, we can rewrite this relationship as

PEi =

ˆ sc,i+ℓ/2

sc,i−ℓ/2

1

2
kmr

2
i δs =

1

2
kmr

2
i ℓ. (3.20)

We can express this continous-flexibility model in the shape-mode by taking

the second derivative of the potential energy with respect to the shape mode,

kPCC =
δ2PE

δr2
= kmℓ. (3.21)

With these shape-mode stiffnesses for the PCC system, we can flesh out the

stiffness matrix K as in Eq. (3.11) and solve for the body-frame and shape-mode

velocities that through the drag metric give balance to the actuator and stiffness

forces the same way we did for the N-Link Chain system,
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◦
g

ṙ

 = D−1
PCC

(∑
JT
j F

a
j (t)−Kr

)
. (3.22)

In the same way as the N-Link Chain system, we can numerically integrate this

relationship over time for any desired number of salp segments or thruster actuation

profile to examine the shape and pose evolution of the salp as the thrusters execute

their actions.

3.3 Simulator Design

To actually implement a simulator for this, I wrote a MatLab GUI through appdesigner

called salpPlotter to load and execute simulations for arbitrary salp designs in-

cluding configurable thruster placements, thruster actuation profiles, number of

zooid units, zooid flexibility, initial conditions, and simulation times. A snapshot

of the GUI with a loaded minimal 3-link rigid-zooid salp structure and symmetric

thruster placement with a sinusoidal activation profile is shown in Fig. 3.3.

This simulator offers multiple different ways of visualizing and analyzing the

evolution of salp behavior over time. In Fig. 3.4 we illustrate GUI plots that re-

sult from execution of the simulation described above. We see a circular evolution

through the ambient SE(2) space, which is representative of the three-dimensional

helical salp structure projected onto two dimensions. Along this circular arc we see

trajectory portions where the salp turns quickly that are connected by straight-

aways. These turning motions correspond to high amplitudes of thruster firing
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activity, which cause structure buckling on the passive joints and emergent ma-

neuvering. The periodic buckling of the passive joints can be seen in the lower plot,

and correspond roughly to the actuation intensity shown in the bottom section of

Fig. 3.3. After simulation, this pose and shape evolution data can be exported and

saved to a .mat file for later processing and analysis.

We can also gather large-scale intuition about salp behavior by examining video

animations of the salp behavior, which can highlight trends that might be obfus-

cated in the raw data. In Fig. 3.5 we show a snapshot in time from the video

output produced by SalpPlotter of the simulation parameters described above.

3.4 Results Discussion

Although much of the technical work done to analyze the salp system stability to

trajectories and shape deformations will be done by future collaborators, here we

present discussion for the preliminary results that we have seen while testing the

simulation capabilities.

3.4.1 Effect of Thruster Angle on Curvature Development

As illustrated in Fig. 3.4, utilizing an alternating thruster placement along the

zooid centers results in a circular motion of the salp through the ambient space.

This is true regardless of the choice between the previously modeled shape modes

and regardless of the thruster activation profile, so long as the thrusters recieve
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Figure 3.3: Illustration of the system-loading section of SalpPlotter, shown with a
loaded 3-Link rigid-zooid salp structure and sinusoidal thruster actuation profile.
On the left are dropdown menus to load customizable salp and force definition
files, a text input defining the simulation time, checkboxes for different simulation
results plotting options and a button that runs the simulation, options for video
output of the salp’s trajectory through space over time, and an option to export
and save the shape and pose evolution of the salp over time.
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Figure 3.4: Illustration of the static results for the simulation input shown in
Fig. 3.3. The 3-Link salp with alternating thruster placement results in a cir-
cular trajectory, which is equivalent to the three-dimensional helical salp motion
projected onto SE(2). In the top plot, we can see points along the SE(2) evolu-
tion of salp motion where the salp executes rapid turning motions connected by
straightaways. These turning motions correspond to high amplitudes of thruster
firing activity, which cause structure buckling on the passive joints and emergent
maneuvering. The periodic buckling of the passive joints can be seen in the lower
plot.
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Figure 3.5: Video screenshot of the 3-Link rigid-body salp system discussed in the
previous figures executing its emergent trajectory through space.
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qualitatively similar actuation signals. The chirality of the circular motion is de-

pendent upon the orientation of the frontmost thruster, with salp chirality roughly

flowing along that thrust vector.

It is possible, however, to achieve non-circular net displacement. By altering

way the thrusters are positioned along the salp backbone so that they are all aligned

to produce the same relative unit thrust vector, we can produce net motion that

travels laterally rather than in a circle. Along this lateral trajectory there is a

small amount of sinusoidal activity that seems to be a function of the number of

salp links and the stiffness of the elastic connections. This lateral motion is likely

a different projection of a three-dimensional helical trajectory onto SE(2). These

results are similar for the case of the PCC salp.

3.4.2 Effect of Number of Salp Segments on Curvature Development

As we increase the number of salp segments while maintaining the same joint stiff-

nesses, thruster profiles, and drag behavior, more intricate curvature development

across the salp spine. Rather than being simple sinusoidal functions, we see shape

begin to oscillate as a function of position along the spine. Joint positions along

the middle stretch of the spine experience higher-magnitude oscillations than joint

positions at the head or tail of the spine. This is likely due to the fact that these

joints experience approximately half of the relative constraint forces felt by the

middle-segment counterparts. As the front thrusters exert force, they do not need

to ‘push’ against forward segments to exert motion. Similarly, the segments in
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Figure 3.6: Results of salp evolution from a simulation case where each thruster
along the body produces the same normal thrust vector. This alignment of thrust
produces forward motion rather than circular motion, and is likely a different
projection of helical three-dimensional motion onto SE(2).
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the back experience no force exerted on them by previous segments. Meanwhile,

the salp zooids in the middle both push against forward segments and are pushed

by posterior segments, resulting in larger constraint torques and correspondingly

larger shape magnitudes.

Qualitatively, this shape evolution produces a buckling wave that travels along

the salp backbone and propogates relative to the thruster activation phase. This

buckling behavior is captured in Fig. 3.8. As the number of links increases, the

circular trajectory of the salp through the ambient space becomes more smooth.

This is predominantly because the geometric-center coordinate choice for the salp

more and more accurately expresses salp body-frame motion.

Curiously, salps with stochastic thrusting profiles where there is no meaningful

thruster activation phase across the backbone of the salp also produce periodic

buckling. This is likely because thruster forces occasionally concentrate near the

tightly-constrained center links of the salp, producing buckling behavior, which

is then ‘pulled’ through to the back of the salp by whole-body salp motion. An

example of this asynchronous buckling is visualized in Fig. 3.9.

3.4.3 Effect of Salp Stiffness and Thruster Phase Delay

As noted in the previous paragraphs, longer salps tend to produce buckling waves

that travel along the backbone and roughly correspond to regions where the thrusters

are firing at full magnitude. The phase delay between adjacent thrusters deter-

mines the arclength distance between regions where the thrusters are firing at max-
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Figure 3.7: Results of salp evolution from a simulation case where thrusters al-
ternate sides with a sinusoidal activation profile for a 10-Link salp. Aside from
the number of segments, this simulation is identical to the 3-Link salp simulation
across thruster behaviors, inter-link stiffnesses, and salp drag behavior. The total
salp length was increased by a factor of 10/3 to maintain the same relative stiffness.
Bolded on the lower plot of shape evolutions are the first and last salp joint values,
showing that they experience smaller deviation from their average value over the
course of the gait.
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10-Link Salp Shape Buckling
Video Snapshot

Figure 3.8: Snapshot of the 10-Link salp experiment described above experiencing
local buckling of the backbone in response to thruster activation phase.

Salp Shape Buckling
Asynchronous Thrusting

Figure 3.9: Snapshot of a 14-Link salp experiment experiencing periodic backbone
buckling despite the lack of a meaningful thruster activation phase.
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40-Link Salp Beginning
Trefoil Knot Formation

40-Link Salp
Trefoil Knot

Figure 3.10: Snapshots of a 40-Link salp experiment that has been tuned by mod-
ulating thruster phase delay and link stiffness to form a trefoil knot oscillating
structure.

imum amplitude. At the buckling point, the local stiffness of the bending joints

determines the magnitude of the curvature that develops, with lower stiffnesses

corresponding to more aggressive buckling and higher stiffnesses corresponding to

lower buckling magnitudes. By tuning the thruster phase delay and the salp back-

bone stiffness, we can produce interesting emergent geometric behaviors of the salp

structure. In Fig. 3.10 we show an example of a longer 40-Link salp that has been

tuned via stiffness and thruster phase modulation to produce a stationary trefoil

knot structure.
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3.4.4 Effect of Salp Shape Mode

The primary effect of changing the shape mode of the salp from that of a rigid-body

N-Link structure to a continuous curvature mode is that the simulations quickly

become much more computationally intensive. While a 3-Link rigid body simu-

lation might be completed in a fraction of a second, the corresponding 3-Section

Piecewise-Continuous Curvature simulation might take upwards of 10 minutes to

complete. This is predominantly because of the nested integration tasks required

in the simulator. Generating the backbone Jacobian along the arclength for the

PCC system requires integrating the infinitesimal adjoint backbone actions related

to the instantaneous curvature at each point. These Jacobians are then themselves

part of an integration problem used to pull back and formulate the drag metric on

the salp degrees of freedom. Finally, the results of this nested integration are then

used in the time-domain integration of the salp ODE in Eq. (3.22).

There are definitely ways to streamline this problem and reduce computational

complexity, perhaps through clever use of integration coupling or drag-metric func-

tion fitting across the shape modes, but this will for now remain an area of future

work.

Other than this difference in computational expense, the behavior of the N-Link

model and the PCC model are very similar. In fact, as the number of segments are

increased, it can be argued that the N-Link chain model produces a more accurate

representation of organic flexible behavior as the emergent joint dynamics are not

subject to the simplifying constant-curvature approximation. Behavior of the 3-
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Link PCC model is illustrated in Fig. 3.11. Similar to the 3-Link rigid-body model,

the PCC structure generates periodic curvature predominantly near the middle of

the salp.

3.4.5 Conclusion and Future Work

In this section we introduced potential models to represent an SE(2) salp with

passive elasticity that locomotes through the emergent behavior resulting from

thruster activation on the salp body. We compared emergent behavior across

different modeling parameters such as curvature shape mode, backbone stiffness,

thruster phase, number of segments, and actuation strategies.

We found different behaviors that likely represent projections of three-dimensional

helical motion onto the SE(2) plane. We also found periodic buckling of the passive

shape modes that can by tuning backbone stiffness and thruster activity be used

to produce predictable geometric deformations of the salp body.

In future work, we intend to investigate futher how thrusters for a three-

dimensional salp structure can be projected onto the two-dimensional plane for

these models and used to predict resultant helices motion. We also intend to use

these simulation results to drive experimentation for physical instantiations of a

robotic salp swimmer.
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Figure 3.11: Simulation results for the 3-Segment PCC model of a salp locomotor.
Similar to the 3-Link rigid-body model, the structure generates periodic curvature
predominantly near the middle of the salp. This simulation of 10 seconds of actu-
ation took approximately 20 minutes of computation time.
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3.5 Thruster Mechanism Design

In the previous section, we developed simulation models to investigate the per-

formance of an SE(2) salp structure consisting of individual zooid segments that

produces emergent buckling and locomotion. In this section, we will attempt to

produce a thruster capable of periodically supplying thrust comparable to that of

a biological salp zooid through actuation of an origami mechanism that is driven

by twisted-and-coiled polymer actuators.

Twisted-and-coiled polymer actuators (TCAs) consist of a polymer strand that

has been twisted and coiled to form a helical structure that contracts when heated

[63]. These coiled strands are often coated in conductive material so that Joule

heating can be used to actuate the mechanism. They have previously been used

to generate tendon-like actuation for mechanisms like robotic fingers [12] or other

soft robots [42], and are well-suited for applying tension on the order of a few

Newtons [67].

Here, we seek to combine these capabilities with collapsible origami function-

ality similar to that which has been explored in previous works on underwater

jet propulsion. While previous works have used a tessellated waterbomb crease-

pattern as the base of the origami mechanism and actuated the origami using

electrical motors [70], here we attempt to design a mechanism that is well-suited

to being driven by TCAs by using a sequence of hexagonal Kresling layers [31].

These individually collapsing layers are convenient, because they can be stacked in

layered pairs of opposite chirality to produce a spring-like cylindrical mechanism
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that collapses with no net rotation.

As biological salps have the capability to produce sinusoidal thrust in the range

of 0.6-2 milliNewtons [8], we seek to design a lightweight mechanism capable of

similar thrust output. In this section we will discuss the design process and pre-

liminary results of this thruster design. My primary contribution to this project

was in designing the origami mechanism and 3D-printed nozzle endcaps, while

my collaborator Ali Jones ran the TCA deployment, production, and modeling

and coordinated the hydrodynamic experiments on the thruster mechanisms. A

prototype of this thruster is pictured in Fig. 3.12.

3.5.1 Origami Design

To begin designing the origami mechanism, we first wrote a MatLab script that

generates a .dxf file used to laser cut the crease patterns, outline edges, and

bolt mounts for an arbitrary Kresling stack of N sides, M layers of two antichiral

Kresling layers, and side length L. Illustrated in Fig. 3.13 is an example of a

crease pattern output by this program for N = 6 sides and M = 3 double-chirality

Kresling layers.

After the desired origami geometry is determined and the print file is produced,

we cut the file from the desired sheet material using a 50W lasercutter. Choosing

the exact lasercutting parameters to cut and etch the sheet was a rather finicky

process, consisting of multiple trial runs. Particularly tricky are the mountain and

valley fold etch lines, where we need a strong enough cut to cause the material
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Figure 3.12: Origami thruster made of staked hexagonal Kresling units that can
be actuated by TCA activation. This model is attached to a platform that we used
to test the water propulsion capabilities. The wires supply an electrical potential
difference that is used to drive the TCAs through Joule heating.
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Figure 3.13: Example of an origami precrease pattern generated by the Kresling
mechanism MatLab generator for N = 6 sides and M = 3 antichiral pair Kresling
layers. This file can be fed to a lasercutter to programatically etch and cut the
template out for rapid manufacturing of the origami mechanism. Mountain and
valley folds are etched using identical laser cutter settings but are illustrated dif-
ferently to highlight the fold geometry.
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to naturally collapse into the origami structure but a light enough cut so that

the material retains the strength to provide the mechanism functionality. If the

etch cut is too light, folding the structure proves tedious, time-consuming, and

inaccurate, and if the etch cut is too heavy you risk cutting through the material

and breaking the water-tight seal that we need to produce thrust force by providing

the water with a method of escape other than the nozzle exit. Careful management

of laser speed and power is necessary, as the laser has a minimum power that

will produce a usable etched precrease but also a maximum speed that provides

consistency of this precrease depth across all cut directions. For the thin material

that we ended up using in our actuator design, we operated at the very bottom of

this laser’s operational range.

After the origami precrease template is cut from the laser cutter, the rectan-

gular strips at the ends are folded inwards to reinforce the mount points to the 3D

printed endcaps, the mechanism is rolled into a cylinder along the jagged edge, and

commercial 3M Scotch tape is used to seal the open edge and form the cylindrical

section. Then, the precrease etches on the origami template are massaged into

fold formation and pinched to retain plastic memory of the collapsible deforma-

tion. This process takes approximately 15 minutes if the laser cutter settings have

been appropriately tuned. An example of a folded and taped origami module is

pictured in Fig. 3.14.

After the origami module is prepared, we attach the 3D printed endcaps to each

end of the mechanism using M3 bolts. For each end, there is an interior ring that

slides into the hexagon to stabilize the hexagonal structure and provide a press-fit
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Figure 3.14: Photo of a folded and taped origami collapsible cylinder made from 3
collapsible antichiral Kresling-layer pairs. This is what the origami module looks
like before it is bolted to the 3D printed endcaps using M3 bolts.
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Figure 3.15: CAD mockup of the 3D printed nozzle for the origami mechanism.
The interior ring is inserted into one end of the origami structure and the nozzle is
slid on over the top, sandwiching the origami material between the two layers. The
origami is then fixed in place through the cut hole mounting points by small M3
bolts. The cantilever mounting points are used to secure the TCAs to the corners
of the actuator.

method of holding the nuts in place for assembly. Onto one end we attach the

nozzle and onto the other end we attach the base plate endcap. These 3D printed

components are visualized in Fig. 3.15, Fig. 3.16, and Fig. 3.17.

Originally, we arbitrarily chose L = 1” to produce a hexagonal mechanism

where each side of the hexagon measured 1 inch across. This origami mechanism

measured approximately 6 inches in length after precreasing and assembly. Because

of restrictions on the TCA length that Ali could reliably fabricate, we later scaled

this down to L = 7/8”, which made the device short enough to reliably produce
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Figure 3.16: CAD mockup of the 3D printed endcap baseplate for the origami
mechanism. The interior ring is inserted into one end of the origami structure and
the base endcap is slid on over the top, sandwiching the origami material between
the two layers. The origami is then fixed in place through the cut hole mounting
points by small M3 bolts.

Figure 3.17: CAD mockup of the interior mounting ring used to stabilize the ends
of the hexagonal structure of the origami mechanism and hold the press-fit M3
nuts for ease of assembly.
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TCAs of the appropriate length.

Choice of material for the origami structure also ended up being an important

decision. First, it was important for the material to be waterproof for it to serve

its purpose. This narrowed our decision down to stone paper and plastic sheeting,

both of which are lightweight and relatively waterproof. After some trial proto-

types of each of these materials, we determined that 0.002” PET plastic sheeting

resulted in the thinnest achievable origami structure possible using our laser cutter.

This material thickness served to be an important parameter in the mechanism de-

sign, as we needed the origami mechanism to be very flexible so that it could be

realistically actuated using the TCAs.

3.5.2 Experimentation

Much of this work will likely end up in Ali Jones’ masters thesis, but I will include

some preliminary results of their experimentation here to complete the storyline.

To take advantage of the fact that TCAs cool and expand much more rapidly than

they heat and contract in water, Ali altered the 3D printed endcaps to fit inside a

linear railing and attached an elastic spring that served to compress the actuator.

This allowed Ali to activate TCAs that expanded the origami mechanism rather

than contracting it. This actuator setup is pictured in Fig. 3.18. On the recovery

stroke, the TCA’s activate to pull and reset the origami mechanism and to refill

it with water. On the thrusting stroke, the actuators relax and the passive spring

contracts to provide thrust.
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Figure 3.18: Submerged origami mechanism with mounting and actuation modified
by Ali Jones. Using the passive spring for the contraction stroke takes advantage
of the fact that the TCAs cool down in water much faster than they heat up. This
assembly was mounted to a static frame and placed adjacent to a load cell that
was used to measure the force of the water exiting the mechanism.

By attaching this frame to a static mounting point and aiming the thruster

directly at a load cell with a flat plate, Ali was able to capture an estimate for the

thrust values that can be expected from this actuation setup. This thrust data

can be seen in Fig. 3.19. From this, we see that the thrusters produce about 0.5

mN of thrust on the thrust stroke, which is slightly below what a biological salp

produces.

3.6 Conclusion

In this chapter, we discussed modeling and experimentation for analysis of the loco-

motion of the sea salp. First, we proposed a mathematical model for low Reynolds

number drag-dominated sea salp comprised of a chain of individual zooids, each

capable of producing thrust through fluid expulsion and possessing passive flexibil-
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Figure 3.19: Preliminary results for the thrust from this actuator captured by Ali
Jones’ experimentation. The the peaks in the green TCA data are estimates of the
actuator thrust as the origami mechanism is excited by TCA action. From this
data, we see that the mechanism produces about 0.8 mN of thrust on the thrust
stroke. This is at the lower end of what a biological salp is capable of. We expect
this number to improve though experimentation revisions, salp mount redesigns,
nozzle tuning, and changes to the endcap that add a passive checkvalve and allow
the chamber to refill from the bottom.
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ity. We then built and described a simulator that we can use to examine emergent

locomotive and buckling behaviors of various salp models and used the results of

these simulations to form some preliminary observations about the effects of salp

design factors on emergent behavior.

Following this, we described the mechanical design of a soft origami mechanism

that we hope to use as a thruster for future robotic salp experimentation. We show

how this origami mechanism is fabricated and assembled with 3D components, and

discuss some preliminary experimentation data found by Ali Jones, where we see

that the thruster is capable of producing thrust comparable to a biological salp

zooid.

Future work for the locomotive model includes the investigation of how these

SE(2) salp model systems can be used in the analysis of their three-dimensional

SE(3) counterparts. We intend to use these simulation results and modeling tools

to drive gait design in future experiments of a robotic salp swimmer. Future work

for the origami thruster involves improving the thrust performance on both the

thrust and recovery stroke and integration into a full robotic salp analog.
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Chapter 4: System Identification and Gait Library Construction for

the AmoeBot

4.1 Introduction

Bioinspired locomotion is an active area of research in the robotics community.

Robots that move through the world using natural body motions rather than

typical robotic wheels or propellers are generally more capable of traversing a wider

variety of environmental terrain, often have higher locomotive efficiencies than their

wheeled counterparts, and help provide insights into the biological mechanisms of

the natural world [16,32].

Bioinspired locomotors make use of a complex relationship between body shape

changes and resulting body motion to locomote through the world. This complexity

necessitates a large number of laboratory experiments throughout the process of

locomotor design to test variations in things like gait parameters, body geometry,

and passive component selection.

It is often difficult to perform these tests in a laboratory setting, especially for

swimming systems that locomote through water. It is possible to perform these

free-swimming tests in the lab [69], but large aquatic testbeds in which robot

swimmers can freely move are expensive and space-filling. To record the results

of free-swimming, it is typically necessary to perform a field deployment of the



113

aquatic robotic system in a large body of water, which is time-consuming and

inconvenient.

Because of the difficulty inherent in deploying freely swimming robotic loco-

motors for laboratory tests, it is common to perform minimal experiments where

the robotic system is held constrained in a relatively small water tank while con-

nected to a force sensor. The robot can then execute shape changes while the force

sensor records the constraint forces that hold the system in place. The nature of

these constraints is highly variable. Some experiments hold the robot completely

stationary in water so that there is no allowed body displacement, while some ex-

periments allow for displacement in a select few degrees of freedom, and yet others

place the robot in a flow tank so that the locomotor can have a controlled velocity

of one degree of freedom with respect to the fluid.

Figure 4.1 shows examples of such experiments.

• In Fig. 4.1(a), robot ‘frog’ legs are attached to a force sensor that reads

constraint forces and holds the legs in place while they enact a ‘kicking’

swimming gait [65].

• In Fig. 4.1(b), a robot ‘breaststroke’ swimmer is constrained to a rail so that

it can move only in one direction while it executes shape changes. A force

sensor records forward and lateral thrusts during the experiment [55].

• In Fig. 4.1(c), a robot ‘fish’ with a passive tail is held stationary in a flow

tank through an attachment to a force sensor that records constraint forces.

The robot executes shape changes while the flow tank is running, such that
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a) b)

c) d)

Figure 4.1: Examples of constrained locomotion experiments. a) A ‘frog’ swimmer.
For experiments, the frog legs are attached to a stationary force sensor [65]. b) A
‘breaststroke’ swimmer. For experiments, the robot is tethered to a force-sensing
rail system that allows only forward displacement [55]. c) A ‘fish’ swimmer. For
experiments, the robotic system is executes shape changes in a running flow tank
while attached to a force sensor [35]. d) An algae cell Chlamydomonas reinhardtii.
For experiments, the cell is constrained at the tip of a micropipette force sensor [7].
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the system has a constant forward velocity with respect to the fluid [35].

• In Fig. 4.1(d), a multiflagellated algae cell is partially aspirated using hydro-

static pressure differences while constrained by a micropipette force sensor.

As the cell is aspirated, the two flagella actuate, causing a forward thrust

that deflects the tip of the micropipette. The deflections of the pipette are

measured using optical flow and cantilever beam theory is used to estimate

the thrust profile from the flagella [7].

While such experiments are useful for testing forward thrust, they are currently

not typically used to develop models that relate shape changes to body motion.

This is because constraining a swimming robot changes the fluid profile that the

locomotor would see from the corresponding fluid profile of a free-swimming sys-

tem. For example, in the robot frog research pictured in Fig. 4.1(a), the authors do

not include the frog’s ‘body’ in the force observation experiment. Because of the

force-sensor constraint, there is no motion of the legs that would cause the body

to experience motion through the fluid, so the body would have no impact on

the thrusting force if included in this experiment. However, for the unconstrained

system, the robot body is subject to fluid drag and an extra hydrodynamic mass

that affect body motion. Because the experiment provides no measure of body

drag or body mass, it is impossible to use the thrust data alone to predict how the

swimmer will move through the fluid. But the lack of a complete hydrodynamic

profile for the robot does not make this a poor experiment! On the contrary, it

is easy to intuitively why this experiment was performed, as we understand on a
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gut level that such motion response data will capture some information about the

behavior of this system in water. The experimental problem for model formation

then becomes identifying the dynamic parameters that drive motion and force for

the aquatic system from the context of the constrained experiment.

Generally speaking, performing a thrust-force measurement imposes a con-

straint on the body of a locomotor in the fluid. These constraints fundamentally

change the way hydrodynamic elements interact with the fluid over the course of

an arbitrary shape change. This means that thrust profiles will be different than

when the locomotor is unconstrained. Because of these complications, attempts

to perform model prediction for biomimetic robots based on thrust-force data are

rarely successful.

In this chapter, we will derive a framework that relates the body geometry and

hydrodynamic properties of an arbitrary locomotor to generalized body constraint

forces. We will demonstrate how this framework can be used to perform system

identification by using constraint force data to predict hydrodynamic properties

such as mass and drag coefficients for all elements in the locomotor. We will

discuss how to tell if desired hydrodynamic properties are observable given a certain

experiment.

After we formulate this framework for system identification from constrained

experimentation, we will apply the methodology to extract dynamic information

from constrained experimentation performed on the AmoeBot, a swimming robotic

platform developed by research collaborators Nick Gravish and Curtis Sparks at

the University of California San Diego [57]. The AmoeBot moves atop the surface
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Figure 4.2: The AmoeBot locomotor on which we validate the geometric techniques
discussed in this work. Two semi-independent thrust-element tape appendages are
actuated by motors that set the angle of the tape with respect to the front of the
robot, and by a linear actuator that sets the distance between the front and back
connection points. Using force sensing, we hope to identify the linear mass and
drag densities of the tape-spring paddles. We then hope to use these hydrodynamic
properties to produce accurate predictions of robot motion in unconstrained sce-
narios. Figure borrowed from [57].

of water through the motion of two tape-spring appendages that act as propulsive

fins. We perform system identification of the tape-spring appendage hydrodynamic

properties using constrained force sensing, and use these hydrodynamic properties

to develop a locomotive model of the swimming system. We then use the model to

optimize the actuator shape and pacing of swimming gaits and develop a library

of navigational maneuvers for the system. Once this library is in place, we use a

joystick controller to select gaits from the library alongside a gait attractor control

field that enables seamless transitions between gait executions. This controller is

used to manually pilot the AmoeBot across two navigational experiments, both of

which took place in an aquatic test tank. In the first, the AmoeBot navigates to a

series of waypoints, matching the pose and orientation at each. In the second, the

AmoeBot follows a figure-eight trajectory around obstacles inside the tank.
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4.2 Mathematical Formulation

In this section, we will derive the equations of motion for a locomoting system,

and then show how this formulation can be used to perform system identification

for systems that are subject to experimental constraints. We will also discuss how

the connection between system geometry and hydrodynamic constraints can be

used to determine from an experiment description if the experiment is sufficient to

develop a full system model.

4.2.1 Derivation of Momentum-Aware Body-Frame Dynamics

Here, we will derive the full momentum-aware equation of motion for body-frame

dynamics using Lagrangian analysis.

We will make use of two ways to express locomotor velocity. The first is ġ,

the velocity of the locomotor’s body with respect to the inertial world frame. The

second is
◦
g, the velocity of the locomotor’s body with respect to the instantaneously

stationary body frame. These velocities are typically expressed as column vectors

of individual velocity components. For locomotors operating in the planar space

of rotations and translations SE(2),

ġ =


ẋw

ẏw

θ̇

 , and
◦
g =


ẋb

ẏb

θ̇

 . (4.1)

The body velocity can be mapped to the world velocity using a left action g
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that rotates the body frame to be aligned with the world frame,

ġ = g
◦
g. (4.2)

The action g is a simple rotation constructed from the locomotor’s body orien-

tation θ with respect to the world frame. In SE(2), g can be expressed as,

g =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (4.3)

The inverse of this rotation, g−1, moves a world frame velocity to a body frame

velocity. Because g is an orthonormal rotation matrix,

g−1 = gT . (4.4)

As discussed in §2.2.1, we can form a locomotor mass matrix M by pulling back

individual body mass element matrices µi using the Jacobians Ji linking body and

shape velocity to individual element velocities in the world frame,

M(r) =
∑
i

JT
i (r)µiJi(r) (4.5)

where M and Ji are both functions of the locomotor’s shape r. The individual

mass elements composing the body can be expressed in SE(2),
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µi =


mx,i 0 0

0 my,i 0

0 0 mθ,i

 . (4.6)

Because rotational inertia term is a result of the displacement of mass from a

mass element’s frame origin, we can neglect mθ if the mass elements are sufficiently

small. This disappearance of angular rotation terms for the individual metrics on

small elements is similar to the treatment that we gave to the Piecewise-Constant

Curvature salp model in the previous chapter in Eq. (3.16), and similar simplifi-

cations have been done before for hydrodynamic systems [69],

mθ = 0. (4.7)

In these cases where there are many small mass elements as opposed to a few

large ones, body rotational inertia will arise from the pullback of the many mass

elements into the central body frame in Eq. (4.5). For cases where we are instead

composing the body of a few larger mass elements, we can estimate mθ using

standard calculations of rotational inertia from mass density and body geometry

as in §2.2.1.

To find the full dynamics of our locomotor in terms of our generalized degrees

of freedom q and generalized forces f acting on those degrees of freedom, we will

use the Euler-Lagrange equation,
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f =
δ

δt

δL

δq̇
− δL

δq
, (4.8)

where the Lagrangian L is the difference between the kinetic energy and the po-

tential energy

L = KE − PE. (4.9)

We can consider passive elastic elements by adding a stiffness potential energy

on the shape variables r or, rarely, the locomotor displacement g̃. For linear springs,

it is convenient to use a stiffness matrix K to define the elastic connections,

PE =
1

2

[
g̃T rT

]
K

g̃
r

 , (4.10)

where g̃ is a vector of locomotor translations and rotations in the world frame.

Because we deal with SE(2) systems in this work that are modeled as being in a

horizontal plane, we can neglect the potential energy contribution due to gravity, as

all inertial elements remain in the same gravitational plane. For three-dimensional

SE(3) systems or for SE(2) cases where there remains some gravitational influence,

we must model the potential energy due to gravity.

Here we can also add a Rayleigh dissipation function to consider velocity-

proportional friction effects. However, because we will be considering both linear

and quadratic drag terms, this function is rather complex. It is easier to add gen-

eralized drag forcing terms after Lagrangian analysis is performed, because there
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are established relationships describing how linear and quadratic drags act on gen-

eralized shape modes [69]. Rayleigh dissipation functions are typically constructed

purposefully to recreate specific dissipation relationships, so there is little lost by

adding the drag-force relationship models after dealing with the Lagrangian energy

mechanics.

We can use the mass matrix M to map body velocity
◦
g and shape velocities ṙ

to total locomotor kinetic energy as in Eq. (2.2),

KE =
1

2

[
◦
gT ṙT

]
M

◦
g

ṙ

 . (4.11)

We now have enough information to evaluate the Euler-Lagrange equation. We

will perform the Euler-Lagrange calculation in the inertial world frame, so we will

end up with equations of motion in terms of generalized world-frame forces acting

on the locomotor fw and generalized shape mode forces τ . We can rotate the gen-

eralized world-frame forces to body-frame forces using our previously established

rotation map g,

fb
τ

 =

gT 0

0 Id


fw
τ

 . (4.12)

We will be adding this gT rotation term as we complete the Euler-Lagrange

calculations to convert the equations of motion back into the body frame.

To perform the derivatives in Eq. (4.8), we move the kinetic energy equation

to an inertial frame using Eq. (4.2),
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KE =
1

2

[
ġTg ṙT

]
M

g−1ġ

ṙ

 . (4.13)

We first perform the derivative with respect to the generalized shape, differen-

tiating with respect to the body displacements and with respect to each of the n

shape modes,

−δL

δq
= −δKE

δq
+

δPE

δq
= −



0

0[
ġT δg

δθ
0

]
M

◦
g

ṙ


1
2

[
◦
gT ṙT

]
δM
δr1

◦
g

ṙ


...

1
2

[
◦
gT ṙT

]
δM
δrn

◦
g

ṙ





+

gT 0

0 Id

K

g̃
r

 , (4.14)

where δg
δθ

is readily calculated from the definition of g,

δg

δθ
=


− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

 . (4.15)

The term that comes from the kinetic energy derivative is the first of the Coriolis
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forces. For SE(2) locomotors, because the top rows of these Coriolis forces are zero,

we do not need to apply the rotation matrix to convert them to the body frame,

so they are found as,

C1 = −



0

0[
ġT δg

δθ
0

]
M

◦
g

ṙ


1
2

[
◦
gT ṙT

]
δM
δr1

◦
g

ṙ


...

1
2

[
◦
gT ṙT

]
δM
δrn

◦
g

ṙ





. (4.16)

For SE(3) locomotors there are complexities in the roll-pitch-yaw rotations

that do make it necessary to factor in the gT rotation from Eq. (4.12), but in this

work we are primarily concerned with SE(2) systems so we will not account for

three-dimensional rotations.

The term in Eq. (4.14) that comes from the potential energy derivative is the

force contribution due to passive stiffnesses in the system,

Fk =

gT 0

0 Id

K

g̃
r

 . (4.17)

This can generalize to nonlinear elastic elements such as asymmetric springs
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by constructing stiffness K as a function of world position and shape rather than

as a linear matrix, and then moving results to the body frame:

Fk =

gT 0

0 Id

K (g̃, r) . (4.18)

Continuing with the Euler-Lagrange operations, we perform the derivative with

respect to generalized speeds. Because the potential energy terms do not depend

on velocity, we are left with only results from the kinetic energy,

δ

δt

δL

δq̇
=

δ

δt


g 0

0 Id

M

◦
g

ṙ


 . (4.19)

Then we perform the time derivative, factoring in the force rotation from

Eq. (4.12),

gT 0

0 Id

 δ

δt


g 0

0 Id

M

◦
g

ṙ


 =

gT δg
δθ
θ̇ 0

0 0

M

◦
g

ṙ


+

(
n∑

i=1

δM

δri
ṙi

)◦
g

ṙ


+M

δ

δt


◦
g

ṙ


 .

(4.20)

The first of these three terms is an adjoint term reflecting how momentum
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changes due to body-frame rotations [30],

Ad∗M

◦
g

ṙ

 =

gT δg
δθ
θ̇ 0

0 0

M

◦
g

ṙ

 . (4.21)

The second term is the second contribution to the Coriolis forces,

C2 =

(
n∑

i=1

δM

δri
ṙi

)◦
g

ṙ

 . (4.22)

Finally, the third term is the body-frame equivalent of mass times acceleration,

Fa = M
δ

δt

◦
g

ṙ

 . (4.23)

Note that for the second two terms, the two force-rotation matrices are inverses of

each other and cancel,

gT 0

0 Id


g 0

0 Id

 = Id. (4.24)

This completes the force contributions due to inertial effects. We can also add

linear drag forces by constructing a drag matrix similar to Eq. (4.5) using body-

Jacobian pullbacks and a matrix of drag coefficients dL to get drag forces that

linearly scale with velocity,
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DL =
∑
i

JT
i dL,iJi

◦
g

ṙ

 . (4.25)

Similarly, we can use the body Jacobians to pull back drag forces that scale

quadratically with velocity rather than linearly using a matrix of quadratic drag

coefficients dQ,

DQ =
∑
i

JT
i dQ,i

Ji

◦
g

ṙ

⊙ Ji

◦
g

ṙ


 , (4.26)

where the ⊙ operator refers to the element-wise Hadamard product.

We can now assemble the complete equations of motion for a freely locomoting

inertial system that is subject to both linearly proportionate and quadratically

proportionate drag forces:

fb
τ

 = Ad∗M

◦
g

ṙ

+ FK + C1 + C2 +DL +DQ +M
δ

δt

◦
g

ṙ

 . (4.27)

These equations are useful for both freely locomoting systems and for con-

strained systems. For freely locomoting systems, there are no generalized forces

acting on the body of the robot, so fb = 0. Shape forces τ are generalized actuator

forces for the actively controlled shapes, and are zero for passive shapes because

elastic forces are accounted for in the FK term. The equations can then be solved

for the body-velocity rate of change and implemented through an ODE solver such
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as ode45 or Euler’s method to study the evolution of body position and passive

shape modes over time given input shape commands.

δ

δt

◦
g

ṙ

 = M−1


fb
τ

− Ad∗M

◦
g

ṙ

− FK − C1 − C2 −DL −DQ

 . (4.28)

For constrained systems, body constraints are enforced by constraining the

body acceleration term. For example, a swimming locomotor facing upstream in a

flow tank and performing shape changes while rigidly attached to load cells would

have a constant forward velocity relative to the water, zero side and rotational

velocities, and zero body accelerations. The generalized body forces fb are then

the reaction forces experienced through the load cells that enforce these constraints

on the swimmer.

Thinking of load cell readings as a generalized body force fb is equivalent in

nature as modeling the load cell as a very stiff spring with a very precisely known

spring constant and including the terms in FK . However, because load cells typ-

ically come with internal circuitry that performs the spring model to force con-

version for you and because we can often neglect the small motions of a system

relative to the base of the force cell, it is generally simpler to model load cell

readings as generalized body forces. For cases where the force cell is less stiff or

the system to be modeled is more massive and relative motion of the distal and

proximal regions of the load cell cannot be neglected, the spring constant model

may be used instead.



129

We will use this framework of constraining accelerations and observing load cell

reaction forces in the next section to perform system identification on hypothetical

locomotors in constrained experiments.

4.2.2 System Identification

Here we will lay out a framework for the geometric system identification of loco-

moting systems using the dynamic equations of motion derived in the previous

section. The end goal of these formulae is to identify mass and drag coefficient val-

ues for the locomotor that best fit observations from experimental results. These

coefficients can then be used to perform various useful analyses on the locomotor,

such as gait optimization, gait analysis for path planning purposes, or locomotor

body geometry optimization. This approach will be very similar in nature to previ-

ous works that have described regression of dynamic parameters [37,56], but with

additional focus on identifying indirect parameters such as element density rather

than mass and with some additional discussion on the role of constraint frames.

When breaking a locomotor model into large discrete subcomponents, we need

six coefficients for each element. First, we need the three mass values that make

up the element’s principal inertia matrix µ: the translational masses mx and my,

and the rotational inertia mθ. Then, there are three additional components that

represent the drag model. In the case of linear drag we search to identify the

translational drag coefficients dL,x and dL,y, and the rotational drag dL,θ. As an

alternative (or in addition at some risk of overfitting) to linear drag coefficients,
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we can use the quadratic drag coefficients dQ,x, dQ,y, and dQ,θ.

When breaking up components into elements that are sufficiently small, we

only need six coefficients for each element, as the rotational coefficients arise from

pulling back the translational coefficients into the locomotor frame. For this case,

the coefficients can be formulated as mass and drag densities rather than discrete

values. Considering coefficients as mass and drag densities can reduce the number

of coefficients needed to fully define the system, preventing overfitting during the

extraction operation. We use this strategy in our AmoeBod system identification

in Section 4.3 to break up long swimmer components into a large number of in-

finitesimal hydrodynamic components and use six coefficients (mass, linear drag,

and quadratic drag densities for the lateral and longitudinal directions) to define

the inertial system.

We start by noting that generalized reaction forces that would be observed by

a constrained robot are linear on all of the coefficients. We will first demonstrate

this for the mass coefficients. We constructed the total mass matrix M in Eq. (4.5)

by pulling back the individual mass matrices into the locomotor frame. Expressed

in terms of the system coefficients, this reads as

M(r) =
∑
i

JT
i (r)


mx,i 0 0

0 my,i 0

0 0 mθ,i

 Ji(r)

 (4.29)

for systems with large discrete elements, and as
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M(r) =
∑
i

JT
i (r)


ℓiρm,x 0 0

0 ℓiρm,y 0

0 0 0

 Ji(r)

 (4.30)

for systems being formulated in terms of a large number of small mass components

with identical hydrodynamic properties. Here, ρm refers to the mass density in

a particular direction of a hydrodynamic element i in terms of the length ℓi of

the small mass element component. This is an accurate approximation so long

as ℓi is sufficiently small that the rotational term can be neglected. From here

we will continue with the derivation for the hydrodynamic density formulation,

as the large discrete element formulation is identical but with a larger number of

coefficients.

We can split the density terms into two separate components and extract them

from the pullback sum:

M(r) = ρm,x

∑
i

JT
i (r)


ℓi 0 0

0 0 0

0 0 0

 Ji(r)

+ ρmy

∑
i

JT
i (r)


0 0 0

0 ℓi 0

0 0 0

 Ji(r)

 .

(4.31)

This can be alternatively expressed in terms of mass matrix derivatives with

respect to the density coefficients, as
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M(r) = ρm,x
δM(r)

δρm,x

+ ρm,y
δM(r)

δρm,y

. (4.32)

In order to calculate forces due to Coriolis effects, we need derivatives of the

mass matrix with respect to each of the j shape variables rj. Fortunately, because

neither of the δM
δρ

terms are functions of the density coefficients, and because the

mass densities are also not functions of shape, this is a simple calculation that

leaves the Coriolis forces linear on the density coefficients:

δM(r)

δrj
= ρm,x

δM(r)

δρm,xδrj
+ ρm,y

δM(r)

δρm,yδrj
(4.33)

For the first term,

δM(r)

δρm,xδrj
= 2

∑
i

JT
i (r)


ℓi 0 0

0 0 0

0 0 0

 δJi(r)

δrj

 , (4.34)

and for the second term,

δM(r)

δρm,yδrj
= 2

∑
i

JT
i (r)


0 0 0

0 ℓi 0

0 0 0

 δJi(r)

δrj

 . (4.35)

After calculating the mass matrix and its derivatives as linear combinations

of the density coefficients, we can collect all of the terms from Eq. (4.27) that

depend on the mass matrix and its derivatives. These are the adjoint, Coriolis,
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and acceleration force terms. We then split each of those terms by the mass

density coefficients and combine them into two terms that are linear on the density

coefficients. We can then plug these terms back into the full equation of motion:

fb
τ

 = ρm,xRm,x

(
◦
g,

δ
◦
g

δt
, r, ṙ, r̈

)
+ρm,yRm,y

(
◦
g,

δ
◦
g

δt
, r, ṙ, r̈

)
+DL+DQ+FK . (4.36)

Here, R represents the regressor function [37], which relates the magnitude of

generalized forces to the respective coefficient and is a function of shape and its

derivatives, body velocity, and body-frame acceleration.

Because the linear and quadratic drag terms, calculated in Eq. (4.25) and

Eq. (4.26) respectively, are also found by pulling back coefficients through the

Jacobians, we can use an identical process to write the drag forces in terms of

the drag density coefficients. This produces an equation for generalized body and

shape forces that is completely linear on all of the desired density coefficients,

fb
τ

 = R

(
◦
g,

δ
◦
g

δt
, r, ṙ, r̈

)
ρ+ FK , (4.37)

where ρ is a column vector of the density coefficients and R is the regression ma-

trix, which relates the dynamic coefficients to generalized forces. If the spring

is linear and the spring constant is unknown, the spring constant can be exper-

imentally identified alongside the density coefficients by taking the derivative of

Eq. (4.17) with respect to the spring constant and adding an additional column to
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R representing the results:

fb
τ

 =

[
Rρ

(
◦
g, δ

◦
g
δt
, r, ṙ, r̈

)
Rk (g̃, r)

]ρ
k

 . (4.38)

If, instead, the spring forcing function is precisely known in advance, the spring

forces can be factored into the generalized force observation to perform extraction

on the density coefficients alone, giving

fb
τ

− FK (g̃, r) = S

(
◦
g,

δ
◦
g

δt
, r, ṙ, r̈

)
ρ. (4.39)

This is useful for extraction on systems that have a mixture of rigid and elastic

constraints, such as a swimming system consisting of actuated ‘fins’ pinned to a

sliding rail that is elastically connected to one point of a water tank, or for systems

with passive-elastic shape components that possess well-known properties.

From Eq. (4.39) we can selectively choose equation rows where we have ei-

ther reliable constraint force observations or knowledge of an elastic connection

alongside reliable displacement observations, and discard the other rows on which

we are not observing experimental data. For example, in the rail-swimming ex-

ample described in the previous paragraph, we might choose to keep rows from

Eq. (4.39) corresponding to forward displacement along the rail and to observed

torques output by a motor executing the shape changes, ending with something

akin to
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−krailg̃x

τmotor

 =

Rx

(
◦
g, δ

◦
g
δt
, r, ṙ, r̈

)
Rr

(
◦
g, δ

◦
g
δt
, r, ṙ, r̈

)
 ρ. (4.40)

More generally, we can selectively choose rows from the coefficient-linear equa-

tions of motion where we have a vector of useful experimental observations O. At

an instantaneous time instance i, this forms an observed relationship between the

system coefficients, system state, state derivatives, and system forces,

Oi = R

(
◦
gi,

δ
◦
gi
δt

, ri, ṙi, r̈i

)
ρ. (4.41)

We perform multiple of these observations across the duration of the exper-

iment. These observations allow us to stack information from all of the n time

instances that comprise the experiment, giving a compiled list of coefficient-to-

force relationships,


O1

...

On

 =


R
(

◦
g1,

δ
◦
g1
δt
, r1, ṙ1, r̈1

)
...

R
(

◦
gn,

δ
◦
gn
δt
, rn, ṙn, r̈n

)
 ρ. (4.42)

These stacked matrices contain all of the information concerning the relation-

ship of system coefficients to experimental forces. We use tilde notation to denote

data compiled from an entire experiment,

Õ = R̃ρ. (4.43)
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The experimental regression matrix R̃ tells us whether the proposed experiment

is sufficient to perform regression on the proposed coefficients. The coefficients are

observable only if R̃ has full column rank. If any of the columns are zero, the

corresponding coefficients do not impact the experimental observations and thus

cannot be estimated from the recorded data. If any of the columns are linearly

dependent, there will not be sufficient information to distinguish the impact of the

codependent coefficients [56].

Conveniently, R̃ is just a geometric statement on the possible states of the lo-

comotor. This means that the rank of R̃ can be checked before performing the

experiment by generating an estimated set of states that might be achieved dur-

ing the experiment. For a proposed experiment, one could generate a list of a

subset of possible states that might be achieved, taking into account experimental

constraints that limit the set of reachable state velocities and accelerations. As

long as this test regression matrix contains a sufficient sampling of experimental

states, it can be used in lieu of the actual experimental sensitivity matrix to de-

termine whether the desired coefficients will be observable given the experimental

constraints.

If R̃ has full column rank, the coefficients are observable from the experiment

and the coefficients can be extracted using the experimental observations by taking

the pseudoinverse of the regression matrix,

ρ = R̃+Õ. (4.44)
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Using the pseudoinverse of the sensitivity matrix in this manner produces a least-

squares estimate of the system coefficients. This is a convenient method of coeffi-

cient extraction for when there is a relatively modest amount of experimental data

and the dynamic forces present in the experiment are well-modelled.

However, this technique does not provide guarantees on satisfying some basic

physical principles in the system. Nowhere in this formulation was the constraint

imposed that the coefficients must be positive. In experiments with high noise

thresholds, or in experiments with large unmodelled forces, it is very possible that

this method will produce unphysical coefficient estimations such as negative mass

or negative drag. In such cases, this problem turns from a simple pseudoinverse

matrix multiplication to a constrained least-squares optimization problem, solvable

using a function like MatLab’s lsqlin. In Section 4.3 we will use this constrained

optimization to regress coefficients that satisfy physical constraints on the dynamic

coefficients.

The regression matrix can also be used to perform tasks such as collision detec-

tion or detection of other unmodeled events via online parameter estimation [37]. If

a system is associated with a set of dynamic parameters which can be re-estimated

on the fly, times where the best-fit dynamic parameters leave an acceptable thresh-

old correspond to instances where system behavior is not well-explained by the

dynamic model. Such a case likely corresponds to a collision event or unmodeled

physics. To enable such capability, we also here we describe an iterative method of

coefficient extraction using the regression matrix that can be tailored to produce

physical coefficient values that best fit experimental results over time.
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We start by choosing an arbitrary set of coefficient values ρk that fit the basic

physical constraints. We then examine one of the experimental force observations

and the corresponding row of the regression matrix,

f = Rρ =

[
R1 . . . Rn

]
ρ1
...

ρn

 . (4.45)

This equation defines an affine hyperplane of dimension n− 1 in the space of n

coefficients. We can refine our guess for ρk by projecting it onto this hyperplane:

ρk+1 = ρk −
Rρk − f

∥r∥
R̂T . (4.46)

Here, r̂ represents the normalized row of the sensitivity matrix,

r̂ =
R

∥R∥
. (4.47)

This update step might result in unphysical negative coefficient values. To

correct this, we constrain any negative coefficient values to be zero and reform the

observation equation using only the unconstrained coefficients,

f = Rρ>0ρρ>0. (4.48)

We can then repeat the hyperplane projection in Eq. (4.46) using only values

corresponding to above-zero coefficients to find the closest set of coefficients to

our original estimate that both lie on the observational hyperplane and satisfy the
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Figure 4.3: The AmoeBot swimming system. Two semi-independent tape ap-
pendages are actuated by individual motors that set the angle of the tape with
respect to the front of the robot, and by a linear actuator that sets the distance
between the front and back connection points. Figure borrowed from [57]. Arbi-
trarily, we refer to the side of the AmoeBot with the motors as the “front.”

constraint of non-negative values.

We can use this iterative update method alongside a notion of sensor vari-

ance to implement a Kalman filter coefficient estimator that uses these hyperplane

projections as coefficient measurements. Unscented Kalman filters have been pre-

viously used to estimate dynamic coefficients in noisy experimental systems [66,69].

Alongside the advantages of being resilient to large experimental datasets and being

robust to realistic coefficient constraints, this method has the capability of being

implemented in an online fashion on freely-swimming locomotors. In these cases,

this form of system identification would provide an online estimate of swimmer

model dynamic properties and could update model predictions for sudden changes

in dynamic properties, such as mechanism breakage.
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4.3 Experimental Validation

In this section, we will discuss the process of validating this process of constrained

system identification on the AmoeBot [57], a swimming robot with a novel tape-

spring swimming appendage developed by our collaborators Curtis Sparks and

Nick Gravish from UCSD. This robot consists of a floating platform holding the

system electronics while a pair of tape-spring ‘fins’ with passive buckling move to

push the robot through the water. The AmoeBot can be seen in Fig. 4.3. Here,

we discuss:

• How we formed our geometric model for the AmoeBot

• How we performed dynamic coefficient regression on this model to fit the

experimental data

• How we used the model to optimize a gait library for the AmoeBot

• How we developed a control field for each of the gaits in the library

• Results for two manually-piloted AmoeBot navigation experiments

4.3.1 AmoeBot Geometric Model

The geometric model we used to represent each of the tape fins is derived using

findings from the original AmoeBot design paper [57]. From this work, we saw

that the tape fin typically buckles at only one point when bent and that this

buckle location has a fairly constant bend radius regardless of buckle location.
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h3 h1

Figure 4.4: (a) An example of a tape-measure buckling point on which we base the
AmoeBot geometry. This buckle point has approximately constant bending radius
regardless of the buckle location. (b) The geometric model that we use to solve
for the fin structure as a function of the angle setting a and the distance setting
D. Using constraints within this geometry, we can solve for the three tape section
lengths L1, L2, and L3, and the angle b of the passive rear connection point. Figure
borrowed from [57].

An illustration of this buckling geometry can be seen in Fig. 4.4 and will be used

to derive the constraints that determine the fin shape as a function of the input

parameters.

The triangular tape structure is a function of the tape angle setting a which is

set by the forward servos, the distance setting D which is set by a linear actuator,

and the total tape length C and tape bend radius d which are both constant

values. For the AmoeBot used in our experimentation, each tape fin at a tape

length of C = 1 foot, and the tape bend radius was found to be approximately

d = 0.5 inches. From these driving values, we can estimate the four parameters

that completely determine the shape of the tape fin. These parameters are the
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length of the forwardmost straight section of the fin L1, the arclength of the tape

along the curved buckle point L2, the length of the rearmost straight section of

the fin L3, and the angle of the passive rear connection point b.

It also useful to use intermediate variables h1 and h3 which are the angle dis-

tances from the front and back connection points respectively to the center of the

tape buckling ‘circle’

h1 =
√
L2
1 + d2, (4.49)

h3 =
√
L2
3 + d2. (4.50)

Additionally, we will utilize in this process the angle from the swimmer spine

to the buckle ‘center’ for the front ac and back bc of the fin,

ac = a− tan−1 d

L1

, (4.51)

bc = b− tan−1 d

L3

. (4.52)

We determine the driven parameters (L1, L2, L3, b) by applying four geometric

constraints on the fin shape. First, we constrain that the three individual tape

lengths must collectively be equal to the total tape length,

C = L1 + L2 + L3. (4.53)
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Then, we apply the fact that the arclength of the curved buckling region can

be found from the front and back connection angles,

L2 = d(a+ b). (4.54)

Next, we reconcile the horizontal distances to the buckle center with the dis-

tance setting,

D = h1 cos ac + h3 cos bc. (4.55)

Finally, we reconcile the vertical distances to the buckling center from each end

of the fin,

h1 sin ac = h3 sin bc. (4.56)

We can then apply an iterative method using fsolve in MatLab to find the val-

ues of the four driven parameters (L1, L2, L3, b) that satisfy these four constraints.

This gives the function that we use to estimate the tape shape as a function of

the joint angle and spine distance setting. We use numerical methods to estimate

derivatives of these parameters with respect to the driving shape variables when

performing system identification in the next section.
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4.3.2 Experimental Coefficient Regression

To perform coefficient regression on the dynamic parameters of the AmoeBot fins,

we attached a test platform consisting of one fin and associated actuators to a

6DOF load cell. Motion commands were sent to the driving motors and constraint

forces and torques were recorded. The experimental setup can be seen in Fig. 4.5.

The experimental trials were repeated 20 times in each direction for each of the

motion primitives used in the test. For data extraction, only one motion primitive

was used, which consisted of a sweep in joint angle from 90 degrees down to 30

degrees while the base length stayed stationary. We find that this motion and

the corresponding reaction forces contains enough information to identify the tape

hydrodynamic parameters. This experimental data can be seen in Fig. 4.6.

There is some sinusoidal oscillation in the force data that we expect is from the

cantilever action of the fin in the water away from the load cell. As the fin actu-

ates, this cantilever structure is excited into resonance, producing the sinusoidal

experimental noise. As the regression process provides a best fit despite noise, we

decided to leave the sinusoidal activity in the signal rather than attempting to

filter it out due to the risk of erasure of signal features.

For the force data, we chose to keep only the thrust and lateral force readings

from the experiment, as these measurements proved the cleanest. To generate

the actuator signal profiles, we took numerical derivatives of the provided shape

data and used a low-pass butterworth filter to clean the noise, resulting in time-

functions for actuator shape, velocity, and acceleration. This data was then used
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Figure 4.5: Visualization of the AmoeBot system identification experiment. One
tape-spring swimming appendage is immersed in water while undergoing shape
changes that it would experience while attached to the AmoeBot. Forward and
lateral constraint forces that hold the system stationary in the tank were recorded
and used to perform system identification on the hydrodynamic coefficients.
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Figure 4.6: Constrained experiment data used to regress the AmoeBot fin dynamic
coefficients. Data from 20 trials of the same motion primitive was used in the
regression. (a) The forward thrust measured by the load cell as the fin shifts
backwards. (b) The lateral thrust measured by the load cell (c) The measured
joint angle profile over the experiment (d) The base length setting, which was held
constant for this motion primitive.
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to estimate the fin structure using the fin geometric model outlined in §4.3.1. From

this geometric model, we estimated the regression matrix for every experimental

data point using the methodology presented in §4.2.2 and collected them. We then

solved the constrained least-squares problem to fit the dynamic coefficients while

maintaining that they have positive definite values. These coefficients were the

lateral and longitudinal hydrodynamic mass density, the lateral and longitudinal

linear drag coefficient, and the lateral and longitudinal quadratic drag coefficient

for the tape fin.

Although mathematically involved, this process has a simple qualitative expla-

nation. For a given shape motion in the experiment, we ask ourselves “What would

we expect the force response to this motion to be if this component had unit mass

density in the lateral direction and all other coefficients were zero? What about

in the longitudinal direction? What about for the drag coefficients?” From this

isolation of the coefficients, we end up with trendlines over the experimental mo-

tion for each coefficient that collectively attempt to explain measured forces. The

problem of coefficient regression then becomes finding the linear combination of

these isolated coefficient trendlines that best explains the experimental forces. This

trendline explanation of the regression process for the lateral mass and quadratic

drag densities on the AmoeBot tape fin is shown in Fig. 4.7.
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Figure 4.7: Fitting lateral mass and quadratic drag densities to the experimental
AmoeBot forces. (a) In blue, the mean and standard deviation window for thrust
force across the experiment. In red and purple, the linear combination of the mass
and drag contributions that best fits the thrust and lateral force data. (b) In green,
the mean and standard deviation window for lateral force across the experiment.
In red and purple, the linear best-fit force combination of the coefficients. The
thrust and lateral force data are fit simultaneously. (c) The expected inertial
contribution profile to the thrust force if the tape had unit mass density. (d) The
expected inertial contribution to the lateral force if the tape had unit mass density.
(e) The expected drag contribution to the thrust force if the tape had unit drag
density. (f) The expected drag contribution to the lateral force if the tape had
unit drag density.
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4.3.3 Gait Library Optimization

In this section, we will use the regressed coefficients to optimize locomotive gaits

for the AmoeBot. For this optimization process, we use two different dynamic

models. In the first, we use a model where we fit only the linear drag densities

so that we may perform a low Reynolds number locomotive approximation. Using

this model and the process described in §4.3.2, we found that the experimental

forces are best described by a zero longitudinal drag coefficient and a lateral drag

coefficient of ρl,y = 0.4451 lbfs
ft2

. In the second dynamic model, we fit the mass and

quadratic drag densities to generate more accurate predictions of the AmoeBot as

a locomotor that is capable of admitting non-zero generalized momentum. For this

model, we find the mass densities as ρm,x = 0.0206 slug
ft

and ρm,y = 0.0822 slug
ft

, and

the quadratic drag coefficients as ρq,x = 0 lbfs2

ft3
and ρq,y = 1.0952 lbfs2

ft3
.

In our experimental coefficient regression, we determined coefficients only for

the tape fins on the AmoeBot. However, there are other hydrodynamic elements

in the system. Most notably, there are two styrofoam floats, one on each side of

the robot, that stabilize the AmoeBot atop the water. To roughly model these

floats, we used the same dynamic densities that were determined for the tape fins

to model the edges of the styrofoam. This allows us to approximate the effect

of the AmoeBot body on locomotive efficacy. This rough model is illustrated in

Fig. 4.8.

Initial gait generation was done using the low Reynolds number physics ap-

proximation and regressed linear drag coefficients. We used these in sysplotter,
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Figure 4.8: Simple model for the AmoeBot used in gait optimization. The yellow
lines represent the tape fin, with dynamic properties determined by experimental
coefficient regression. For the styrofoam float, we used the same experimental
coefficients as regressed for the tape around the perimeter of the two independent
styrofoam sections to provide a rough estimate of the effect of the styrofoam on
AmoeBot locomotion.
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one of the tools in our lab that has been previously developed to optimize mo-

tion for kinematic locomoting systems [45,46,48]. By implementing the geometric

and physics model for the AmoeBot in sysplotter, we leveraged previous work

to quickly determine cyclic shape changes parameterized by fourier coefficients on

each of the shape variables that produce useful motion.

To begin gait family optimization, we decided on the different types of control

actions that we need to fill out the gait library. For the AmoeBot, we ended up

with a few different types of action. First, we generated a forward motion gait.

This was found by optimizing for the forward gait efficiency ηX ,

ηX =
gx
D
, (4.57)

where D represents the metric-weighted arclength of the gait. This optimization

produces a candidate gait that propels the AmoeBot forward by a value of g̃x. This

forward motion plan also comes with a backward motion counterpart. By time-

reversing the gait signal, we generate motion that propels the AmoeBot backwards.

Although this motion will likely not be the exact inverse of the forward motion

due to the unmodeled pitching effect of the AmoeBot in water, it still serves as a

useful motion plan that effectively produces reverse motion.

We also generated half-step gaits for forward-backward motion that we felt

would be useful for tasks like station keeping or precise trajectory following over

time. To do this, we use the same objective function as above for the small-forward

gait efficiency ηx, but additionally apply the constraint that the gait must travel
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half the locomotive distance,

ηx =
gx
D
,

such that gx =
g̃x
2
.

(4.58)

In the same way as for the larger forward gait, this optimization produces a

cyclic shape curve parameterized by Fourier variables that can be time-reversed to

produce an analagous backwards gait.

Next, similar to the forward motion, we used sysplotter to optimize turning

gaits by formulating objective functions for turning motion ηΘ and for half-step

turning motion ηθ. The objective function for the larger gait,

ηΘ =
gθ
D
, (4.59)

produces an optimized turning displacement per cycle g̃θ. Using this, we can

constrain the half-step gait,

ηθ =
gθ
D
,

such that gθ =
g̃θ
2
.

(4.60)

Similar to the forward motion gaits, these turning motions can be reversed by

time-inverting the gait. Unlike the asymmetry of the forward-backward motion

pair due to three-dimensional effects, this time reversal produces equivalent gaits
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due to the bilateral symmetry of the AmoeBot.

For the final gait motion, we attempt to combine net forward and turning

displacement. We call this gait the steering gait, with objective function ηs. The

idea is to normalize resulting gait displacements by the maximum values and find

a gait that produces both forward and turning motion using the objective function

ηs =

gx
g̃x

+ gθ
g̃θ

D
. (4.61)

This gait is very useful and results in four types of motion. The default gait

produces positive locomotion in gx and gθ, moving the AmoeBot forward and

counterclockwise. By invoking the bilateral symmetry of the AmoeBot, the joint

commands sent to each of the servos can be swapped, resulting in a gait that

moves the AmoeBot forward and clockwise. Finally, by performing time-reversals

of these two gaits, we produce motions that can move the AmoeBot backwards

while simultaneously rotating either clockwise or counterclockwise. Qualitatively,

these gaits look as if the AmoeBot were performing the forward or backward gait

with only one fin while leaving the other stationary.

The final ‘gait’ used to flesh out the AmoeBot control library is not really

a gait at all: it is the zero-movement case. For this gait, the AmoeBot holds

still at whatever the last actuator signal was. This is useful as a default case for

the AmoeBot, where the AmoeBot ceases motion whenever no high-level control

command is supplied.

Collectively, these gaits can be mapped onto the space of possible inputs to a
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joystick. This mapping is shown in Fig. 4.9. In the center is the black no-motion

gait. Each gait is associated with a control point on the joystick range, with gait

execution decided by which gait the joystick output is closest to. This results in a

division of the joystick space into voronoi cells, with each cell associated to a gait.

Initially, we deployed these gaits expressed as shape-change cycles onto the

AmoeBot. Our control loop executed the predetermined shape changes at the

maximum possible actuator speed. However, this resulted in poor performance.

The AmoeBot would generate a significant amount of beneficial momentum on the

power stroke of the gait, but would perform the return stroke equally quickly and

the momentum would reverse, resulting in poor locomotive performance. Although

the robot still experienced some net locomotion as expected by the optimizer, we

realized that we could improve performance by taking into account the momentum

dynamics of the robot.

To optimize the momentum dynamics, we performed an optimization of the

pacing along the gait using the mass and quadratic drag parameters regressed from

the experimental data. This optimization was performed over a normalized set of

shape coordinates. We found that expressing servo angles in radians and linear

actuator distance in feet produced a large disparity in the relative arclength of

the curve as it travels in each dimension. This was a problem, as the servomotors

experienced large gait arclengths but can turn quickly, and the linear actuator

corresponded to a small fraction of the uncorrected gait arclength but moved very

slowly in practice. To account for this and better identify features on the gait

that need accounted for by pacing, we independently normalized each of the shape
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Figure 4.9: Division of the control joystick input into gaits. Each gait is associated
with a control point on the joystick range, with gait execution decided by which
gait the joystick output is closest to. This results in a division of the joystick space
into voronoi cells, with each cell associated to a gait. Diagonally-opposed gaits
are the same motion that has been time-reversed. Positive forward speed refers
to forward motion and positive rotational speed refers to clockwise motion. This
inversion of the right-hand rule makes the AmoeBot more intuitive to pilot.
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modes r by performing

r̂(r) =
r − rmin

rmax − rmin

. (4.62)

On this shape space that more equitably distributes the arclength ŝ between

the dimensions, we find that gait pacing optimizations converge faster and more

reliably, as gait features are more easily associated with particular arclength ranges.

We scale pacing v(ŝ) relative to the actuator limitations, with the maximum

pacing vmax = 1 performing the shape changes at the upper bound of speeds

we place on the servos and the linear actuator. These speeds are quite different

between the actuators due to mechanical limitations, with the servos traveling back

and forth across their full range of actuation in about a second while the linear

actuator takes eight seconds to perform a similar sweep. If pacing is commanded

above the maximum values allowed by the actuation, the gait will follow a different

path through shape space than intended as the motors struggle to keep up and

locomotion will be less efficient. In addition to the pacing upper bound of vmax = 1,

we also implement a pacing lower bound of vmin = 0.2, corresponding to the

actuators moving at 20% speed. We implement this, because if the pacing value

hits zero actuation ceases. We found that without the protection of v(ŝ) ≥ 0.2, gait

optimization freezes as motion slows to a halt and the full gait motion estimation

cannot be completed.

With these limits on pacing values in place, we implement a similar Fourier

parameterization of the pacing as a function of the normalized arclength,
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v(ŝ) =a0 + a1 cosωsŝ+ b1 sinωsŝ

+a2 cos 2ωsŝ+ b2 sin 2ωsŝ

+a3 cos 3ωsŝ+ b3 sin 3ωsŝ

+a4 cos 4ωsŝ+ b4 sin 4ωsŝ.

(4.63)

Here, the gait frequency ωs is a function of the total gait normalized arclength Ŝ,

ωs =
2π

Ŝ
. (4.64)

Rather than constrain the function v(ŝ) to be between vmin and vmax through

fmincon, we instead allow the function to be unconstrained but apply the pacing

limits as they are applied in the controls loop. This speeds up optimization by

reducing the need to follow many constraints.

The Fourier parameters are then optimized using MatLab’s fmincon. To per-

form this optimization, we implement a locomotion simulator as in Eq. (4.27) using

the hydrodynamic mass and quadratic drag densities regressed from the AmoeBot

experimental data. We optimize similar to Eqs. (4.57) to (4.61), but using total

gait execution time T in place of weighted arclength cost D. This produces a

velocity pacing as a function of phase along the gait for each of the gaits in our

library. This optimization need only be performed five times, once for each of the

forward gait, the half-step forward gait, the turning gait, the half-step turning

gait, and the steering gait. As long as the pacing is associated with a particular
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shape, the time-reversed and angle-reversed gaits can effectively utilize the same

speed profile.

Generally, the primary effect of this pacing scalar after optimization is to slow

down the pace of the gait on the return stroke. The majority of the gait is per-

formed at the maximum allowable speed, with a sudden drop in gait pace as the

return stroke is executed. Performing most of the gait at maximum allowable

speed decreases the gait period, allowing a higher gait frequency and faster speed.

Dropping the pace during the return stroke reduces the buildup of detrimental

momentum, increasing the net displacement per gait cycle. An example of a gait

pace profile for the forward-displacement gait is shown in Fig. 4.10.

4.3.4 Shape Control and Gait Transitions

The dual-layer optimization process described in the previous section results in

thirteen gait shapes and gait pacing evolutions that our model predicts will result

in useful maneuvering locomotion. We show in Fig. 4.9 how these gaits are mapped

to a controller. Before we run an experiment, however, we must establish rules for

how to transition between gaits and how to converge to a gait from an arbitrary

shape position. These two questions end up being identical in nature. Much of

this work was developed by my labmate and research collaborator Jinwoo Choi,

and more detail on this topic can be found in his bibliography.

The problem statement is to find a rule for what control action to execute

from any given starting point that cause simultaneous execution of the gait and
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Figure 4.10: Visualization of the pacing profile for the forward-motion gait as a
function of the normalized arclength. For most of the gait, the pacing scalar is 1
and the gait is executed at the maximum speed allowed by the actuators. However,
for the return stroke while the servo angle ‘resets,’ the pacing scalar drops to the
minimum value, reducing the buildup of detrimental momentum.



160

rejection of error to the desired limit cycle. To do this, we divide the gait ϕ up into

n points, equally spaced along the gait arclength. For an arbitrary shape value α,

we find the point on the gait ϕmd of these n points that has the shortest distance

to α,

ϕmd(α) = argmin
ϕ1...ϕn

∥ϕi − α∥. (4.65)

We then impose two control vectors based on this relationship. The first is the

convergence vector B(α) which similar to the idea of vector field divergence points

directly to the nearest location of the gait,

B(α) = ϕmd − α. (4.66)

Second, we impose an analog to vector field curl that we call the circulation

vector. This vector points parallel to the direction that the shape would flow if it

were converged to the gait limit cycle, and is equivalent to the unit tangent vector

T̂ϕ at the closest point on the gait. We find this unit tangent vector using central

differencing on the neighboring points relative to the nearest gait location ϕmd,

T̂ϕ(α) =
ϕmd+1(α)− ϕmd−1(α)

∥ϕmd+1(α)− ϕmd−1(α)∥
. (4.67)

We normalize the circulation vector but not the convergence vector because the

convergence vector magnitude gives proportional control that rejects error from an

arbitrary shape to the gait limit cycle. Meanwhile, the circulation vector should

maintain constant magnitude so that we develop shape curves that execute the
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gait limit cycle.

We combine these two vectors and normalize to produce the control velocity

unit vector Ĉ(α) using a weighting factor w that determines how much convergence

is prioritized over circulation,

Ĉ(α) =
wB(α) + T̂ϕ(α)

∥wB(α) + T̂ϕ(α)∥
. (4.68)

For our control formulation, we used a weighting factor of w = 2.

From here, we scale the magnitude of the control velocity using two factors.

The first scaling factor γ sets the control velocity to the maximum amount that

is achievable by the actuators. We find this scaling factor using the actuator

speeds Ĉi(α) and their corresponding maximum velocities ui,max for each of the m

actuators,

γ(α) = max
C1...Cm

| Ĉi

ui,max

|. (4.69)

This produces γ(α) as the fractional utilization of the most heavily utilized

actuator under the unit control velocity. With this scalar taking control velocity

to the maximum possible speed that the actuators are capable of producing, we

then apply the pacing function v(ŝ) optimized in the previous section, noting that

the normalized arclength along the gait is a function of the shape of the closest

gait point ϕmd. This provides us with the control velocity actions for each of the

shape values αi that result in execution and error correction of the desired gait

limit cycles,
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C(α) =


δα1

δt
(α)

...

δαm

δt
(α)

 =
v(ŝ(ϕmd))

γ(α)
Ĉ(α). (4.70)

In practice, we precompute these control velocity vectors for a grid across the

allowable shape space and interpolate them between the points to come up with

our real-time control law. This produces a control vector field that, for every point

in the shape space, flows the shape to and along the desired optimized limit cycle.

A simplified example of this type of control field is shown for the low Reynolds

number three-link swimmer forward motion gait in Fig. 4.11. A more complex

three-dimensional example of this gait control technique is shown in Fig. 4.12.

Implementing this control law formation for each of the thirteen gaits lets

us seamlessly switch between them. When a gait is commanded, the controller

performs a lookup through the table of control laws to see which control field it

should flow along. Swapping between gaits is simply a matter of changing the

control field. For the zero motion gait, we use the control law C(α) = 0.

4.3.5 Experimental Results

Here, we discuss the results of two experiments we performed on the AmoeBot

using the control laws optimized from the experimentally regressed dynamic co-

efficients. We performed these experiments in a test tank filled with water with

physical markers indicating desired trajectories and waypoints. We see that this
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Gait Control Field
Three-Link Swimmer Forward Gait

Figure 4.11: Visualization of a gait control field generated for the low Reynolds
number three link swimmer forward gait using the methodology presented here.
Executing the defined control actions from any initial shape point results in flows
that converge to the execution of the desired gait. This figure was developed by
my research collaborator Jinwoo Choi.
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Figure 4.12: Visualization of the gait control field generated for the AmoeBot
forward motion gait. The dotted red line represents the desired limit cycle and
the thin black lines represent gaits from arbitrary starting points converging to the
limit cycle.
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method of control formulation from experimental data results in finite-time con-

trollability to a variety of poses and orientations in the workspace and leads to

intuitive control of the system through joystick input.

These experiments required coordination between three separate systems. On

the AmoeBot itself, computation is performed by an Arduino MKR WiFi 1010.

This microcrontroller generates and distributes a local WiFi network that it uses

to receive shape motion commands and processes these commands into actuator

signals that it sends to the motors. The communications handling and the ac-

tuation control are done asynchronously through an Arduino real-time operating

system.

The second system consists of a laptop running MatLab near the test tank.

Connected to this laptop is a USB handheld controller that recieves joystick and

button input from the AmoeBot pilot. On this computer runs the software that

processes joystick input from the handheld controller, chooses the corresponding

gait control vector field, sequences the next 100ms of control actions for the Amoe-

Bot from the control flow, and sends this command data at 10Hz to the AmoeBot

via the local WiFi network. This computer also recorded the local command and

shape data for later experimental visualization.

The third system is a Nikon D7000 DSLR camera. This camera was positioned

above the test tank to capture a birds-eye view of the AmoeBot maneuverability.

This video was synchronized with the MatLab data by hand through the use of

visual flags and handheld controller input. After the experiments, the AmoeBot

position and orientation were estimated using visual filtering and the resulting
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data was overlaid on the videos.

Two experiments were run to demonstrate the maneuverability of the AmoeBot.

In the first, two lasercut posterboard arrows were clamped to the side of the test

tank to provide the AmoeBot with position orientation waypoints to navigate

between. The experimental setup for this experiment is shown in Fig. 4.13, and

the experimental results are shown in Fig. 4.14. Overall, the AmoeBot succesfully

navigates between the desired waypoints. It moved rather slowly, with the total

navigation time taking approximately 6 minutes and 24 seconds, but was able to

visit the waypoints to within acceptable tolerances. At the first waypoint, a small

reorientation maneuver was necessary to turn the AmoeBot to point along the

desired orientation. This was the only maneuver throughout the experiments that

used the turning-optimized gaits. For the rest of both of the experiments, the

AmoeBot maneuvered using the forward, reverse, and steering gaits, which was

found to be an intuitive way to pilot the vehicle.

In the second experiment, an aluminum frame was inserted into the test tank,

holding two lasercut visual markers. The AmoeBot was then driven in a Figure-

Eight pattern around the two markers, demonstrating its turning and maneuvering

capabilities. This experiment took 9 minutes and 51 seconds to complete. Along

the way, the AmoeBot occasionally bumped into the aluminum frame and the

side wall of the test tank, but was able to recover and continue navigation after

every incident. A side-view of the experimental setup can be seen in Fig. 4.15,

and the experimental results can be seen in Fig. 4.16. Notable buildup of angular

momentum was seen in this experiment, with the AmoeBot continuing to experi-
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Figure 4.13: A side-view of the experimental test-tank for the waypoint navigation
experiment. Two white posterboard arrows were clamped to the edges of the test
tank, providing position and orientation waypoints to navigate between.
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Waypoint 1
Waypoint 2

Start Point

Reorientation
maneuver

AmoeBot Waypoint Navigation Experiment

Figure 4.14: View of the AmoeBot navigating between its starting position and the
two waypoints set by the lasercut posterboard arrows. The total experiment time
from start to finish was 6 minutes and 24 seconds. The color-coded trajectory
is an estimate of the AmoeBot center over time, with the color associated to
the gait command at that point along the route. At the first waypoint, a small
reorientation maneuver was necessary to turn the AmoeBot to point along the
desired orientation.
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Figure 4.15: A side-view of the experimental test-tank for the figure-eight experi-
ment. An aluminum frame was inserted into the test tank and topped with white
visual markers to indicate the structure in the video.

ence orientation drift multiple gait cycles after the execution of the latest turning

motion. This highlights the importance of accounting for locomotor momentum

during the control process.

These experiments demonstrate that the gait control methodology algorithmi-

cally built from constrained experimental data is sufficient to provide navigational

control authority for the AmoeBot .
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Start/End
Point 4

Point 3

Point 2

Point 1

AmoeBot Figure-Eight Experiment

Figure 4.16: View of the AmoeBot performing figure-eight navigation around the
aluminum truss. The total experiment time from start to finish was 9 minutes
and 51 seconds. The color-coded trajectory is an estimate of the AmoeBot center
over time, with the color associated to the gait command at that point along the
route. In this experiment, the AmoeBot was controlled using only the forward and
steering gaits.
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4.4 Conclusion

In this chapter, we proposed a methodology for performing system identification on

constrained locomotion experiments for aquatic systems and validate this method-

ology by performing experiments on a floating aquatic robotic platform called the

AmoeBot.

We discuss how to use a system’s hydrodynamic equations of motion to generate

the regression function for experimental data, and demonstrate this process of

regression for the dynamic coefficients of the AmoeBot tape fin. Then, we use this

identified model to optimize for a suite of gaits useful for AmoeBot locomotion.

For desired gait motion, we first optimize kinematically to find a shape profile

that produces beneficial net motion, then we optimize dynamically to find a speed

profile at which to execute this gait that takes into accound the buildup of swimmer

momentum. We then map the input of a joystick controller to this gait library

and generate a control law for each gait that converges arbitrary initial shape

conditions to the desired optimized limit cycle.

We then demonstrate that this algorithmic process results in gaits useful for

AmoeBot locomotion by performing two navigational experiments in a test tank

filled with water. In the first experiment, the AmoeBot maneuvers between pre-

set position and orientation waypoints. In the second, the AmoeBot performs a

figure-eight maneuver around an aluminum frame submerged in the water. These

experiments demonstrate the controllability of the AmoeBot using locomotion op-

timizations from constrained experimental data.
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There is much room for future contributions using this platform and methodol-

ogy. In this work, we arbitrarily chose one side of the AmoeBot as the ‘front’ and

assumed that time-reversal of gaits would result in opposite motion. A more cohe-

sive investigation of the stability properties of the locomotor would help determine

which directions of travel actually produce the most efficient locomotion. There

is also room for future controls work on many fronts. Future work aims to gener-

ate optimal gaits continuously from controller input rather than by optimizing for

discrete locations on the input space. We also believe that it would be possible

to use a Model Predictive Control framework to automate AmoeBot navigation,

eliminating the need for a pilot.
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Chapter 5: Conclusion

In this thesis, I discussed geometric techniques and provided experimental valida-

tion for analysis on a large variety of locomoting systems. In particular, I focused

on swimming systems that benefit from passive elasticity in their construction. I

feel that this area of research is important, as I strongly believe that we have much

to gain from understanding the role of passive elasticity in biological locomotion.

If we can exploit passive behavior to improve the locomotive qualities of mobile

robots, I feel that we can enable new classes of robotic systems that can provide

utility and improve quality of life in areas from scientific exploration to delivery

services to social robotics to home maintenance.

My work was broken down into three primary contributions, which correspond

roughly to different regions on the Reynolds number spectrum.

In the first contribution, I proposed a model for passive-elastic locomotion in

high Reynolds number environments where the physics are driven by inertial ef-

fects. I demonstrated a framework for gait optimization that leverages passive

shape behavior and showed that continuous flexibility offers some efficiency and

speed gains over discrete joints under comparable design conditions. There, I

showed that it is possible to optimize gaits and passive-elastic design parame-

ters simultaneously during the design process to enable the most efficient possible

passive-elastic locomotion, and also that it is possible to optimize for gaits with
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preset sub-optimal passive coefficients in the case that design restrictions prevent

passive-elastic tuning. Future work includes expansion of these techniques into a

higher number of active and passive shape modes and the inclusion of nonlinear

stiffness and damping effects for more realistic simulations.

In the second contribution, I developed a model and simulator for a low Reynolds

number analog of the sea salp in which the physics are driven by fluid drag and

the robot consists of an array of independent zoid agents. In this work, I showed

that excitation of fluid thrust on the zooid agents produces predictable behav-

ior and evolution of the superstructure into trajectories that are stable to certain

workspace trajectories and shape-space orbits. To enable future investigations into

these findings, I developed a GUI platform to test new salp design directions and

to examine robotic salp control policies. I also helped to develop a novel origami

thruster driven by twisted-and-coiled actuation that produces thrust on the scale

of a biological salp zooid. Future work includes experimental validation of these

salp experiments and expansion of the salp model into three-dimensional SE(3)

geometric space.

In my final contribution, I proposed a methodology for performing system iden-

tification on constrained locomotor experiments. I showed that although adding

experimental constraints changes the dynamic interaction of the locomotor with

its surrounding environments, it often remains possible to perform regression on

the locomotor’s dynamic coefficients using experimental data. This regression en-

ables the formulation of a dynamic model that can be used to generate a library

of motion behaviors. I validated these results on the AmoeBot locomotion plat-
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form, an aquatic robot that swims using novel tape-fin actuators. Because of

the peculiar hydrodynamic properties of water, this system lies solidly between

the low and high Reynolds number regimes, and neither inertial nor drag effects

could be safely ignored. Using constrained experimental data for the AmoeBot, we

performed regression on the system’s locomotive elements, and used the resulting

hydrodynamic model to algorithmically generate a motion library that can be used

to pilot the AmoeBot. We validated this technique through deployed navigation

experiments, where we demonstrated that our model identification and gait library

optimization techniques are sufficient to enable controllability of the AmoeBot in

laboratory conditions. Future work on this project includes stability studies on the

AmoeBot to determine most efficient directions of locomotion and improvements

on this control technique that allow for the generation of gaits that are continuous

on the control input space rather than formed by discrete components.

I feel that this work has helped push the boundary on our knowledge of how

locomoting systems use passive dynamics to enable beneficial motion. I hope in

the future to see similar techniques used to develop and drive robotic systems that

improve quality of life, and I hope that this line of inquiry will enable more insight

into motion in the biological world. I am left with a sense of optimism for the field,

and I believe that one day I will see the natural bounce and spring in my own step

mirrored in that of the robots around me. Thank you for reading.
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laine, and Oliver Bäumchen. Dynamic force measurements on swimming
chlamydomonas cells using micropipette force sensors. Journal of The Royal
Society Interface, 17(162):20190580, January 2020.

[8] Q. Bone and E. R. Trueman. Jet propulsion in salps (tunicata: Thaliacea).
Journal of Zoology, 201(4):481–506, December 1983.

[9] D.R. Brumley, R. Rusconi, K. Son, and R. Stocker. Flagella, flexibility and
flow: Physical processes in microbial ecology. The European Physical Journal
Special Topics, 224(17–18):3119–3140, December 2015.



177

[10] Alejandro Cabrera and Ross L. Hatton. Optimal control of robotic systems
and biased riemannian splines. ESAIM: Control, Optimisation and Calculus
of Variations, 30:36, 2024.

[11] Joshua M. Caputo and Steven H. Collins. An experimental robotic testbed
for accelerated development of ankle prostheses. In 2013 IEEE International
Conference on Robotics and Automation, pages 2645–2650, 2013.

[12] Kyeong Ho Cho, Min Geun Song, Hosang Jung, Jungwoo Park, Hyungpil
Moon, Ja Choon Koo, Jae-Do Nam, and Hyouk Ryeol Choi. A robotic finger
driven by twisted and coiled polymer actuator. In Yoseph Bar-Cohen and
Frédéric Vidal, editors, Electroactive Polymer Actuators and Devices (EA-
PAD) 2016. SPIE, April 2016.

[13] Alejandro Damian-Serrano and Kelly R. Sutherland. A developmental on-
tology for the colonial architecture of salps. The Biological Bulletin, page
000–000, April 2024.

[14] A. De Luca and P. Tomei. Elastic joints, page 179–217. Springer London,
1996.

[15] Tony Dear, Blake Buchanan, Rodrigo Abrajan-Guerrero, Scott David Kelly,
Matthew Travers, and Howie Choset. Locomotion of a multi-link non-
holonomic snake robot with passive joints. The International Journal of
Robotics Research, 39(5):598–616, January 2020.

[16] Jared Diamond. Transport mechanisms: The biology of the wheel. Nature,
302(5909):572–573, April 1983.

[17] BJDOM Franco and Luiz Carlos Sandoval Góes. Failure analysis methods in
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